Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.
Answer is: synthesis.
Chemical reaction: Ba + F₂ → BaF₂.
Synthesis is type of reaction where two or more compounds (in this reaction barium and fluorine) react to form one product (in this reaction BaF₂).
BaF₂ - barium fluoride, salt, <span>white cubic crystals, soluble in methanol and ethanol.</span>
[CO] = 1 mol / 2L = 0.5 M
[
According to the equation:
and by using the ICE table:
CO(g) + H2O(g) ↔ CO2(g) + H2(g)
initial 0.5 0.5 0 0
change -X -X +X +X
Equ (0.5-X) (0.5-X) X X
when Kc = X^2 * (0.5-X)^2
by substitution:
1.845 = X^2 * (0.5-X)^2 by solving for X
∴X = 0.26
∴ [CO2] = X = 0.26
Answer:A and B
Explanation: orientation and energy is all that matters
<span>Thomson studied electric discharge in a vacuum and found that the deflection of rays was evidence of atoms containing much smaller particles. He calculated that these particles would have a large charge in relation to their mass. While he did not name electrons, he knew they existed.</span>