Answer: partial pressure of NOBr is 7792 atm
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients.

Equilibrium constant is given as:
![K_{p}=\frac{[p_{NOBr}]^2}{[p_{NO}]^2\times [p_{Br_2}]^1}](https://tex.z-dn.net/?f=K_%7Bp%7D%3D%5Cfrac%7B%5Bp_%7BNOBr%7D%5D%5E2%7D%7B%5Bp_%7BNO%7D%5D%5E2%5Ctimes%20%5Bp_%7BBr_2%7D%5D%5E1%7D)
![28.4=\frac{[p_{NOBr}]^2}{[(119)^2\times (151)^1}](https://tex.z-dn.net/?f=28.4%3D%5Cfrac%7B%5Bp_%7BNOBr%7D%5D%5E2%7D%7B%5B%28119%29%5E2%5Ctimes%20%28151%29%5E1%7D)
atm
Partial pressure of NOBr is 7792 atm
The isotopes of an element differ in the number or neutrons whereas the number of protons or electrons of a neutral atom stays the same. The molar mass of the element is based on the percent abundances of different isotopes and the individual molar mass of each isotope.
Poop and poopie
Hope this helps!!?!?
The question is incomplete, here is the complete question.
A chemist prepares a solution of copper(II) fluoride by measuring out 0.0498 g of copper(II) fluoride into a 100.0mL volumetric flask and filling the flask to the mark with water.
Calculate the concentration in mol/L of the chemist's copper(II) fluoride solution. Round your answer to 3 significant digits.
<u>Answer:</u> The concentration of copper fluoride in the solution is 
<u>Explanation:</u>
To calculate the molarity of solute, we use the equation:

We are given:
Given mass of copper (II) fluoride = 0.0498 g
Molar mass of copper (II) fluoride = 101.54 g/mol
Volume of solution = 100.0 mL
Putting values in above equation, we get:

Hence, the concentration of copper fluoride in the solution is 
Answer:
Ocean, lakes and rivers. Are all liquids.
Explanation:
Ocean, lakes and rivers. Are all liquids. Snow starts off as a liquid, evaporates into a gas and camoes back as snow.