1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stella [2.4K]
3 years ago
10

Under conditions for which the same roojm temperature is mainteined bt a heating or cooling system, it is not uncommon for a per

son to feel chilled in the winter but comfortable in the summer. Provide a plausible explanation for this situation (with supporting calculations) y by considering a room whose air temperature is maintained at 20 Dagree C throughout the year, while the walls of the room are nominally at 27 Dagree C and 14 Dagree C in the summer and winter, respectively. The exposed surface of a person in the room may be assumed to be at a temperature of 32 Dagree C throughout the year and to have an emissivity of 0.90. The coefficient associated with heat transfer by natural convection between the person and the room air is approximately 2 W/m2 Middot K.
Engineering
1 answer:
bonufazy [111]3 years ago
7 0

Answer:

Net heat transfers:  during summer = 52.253 W/m^2 during winter = 119.375 w/m^2

Explanation:

Given data :

Room temperature throughout the year = 20⁰c = 293 k

Room temperature during summer = 27⁰c = 300 k

Room temperature during winter = 14⁰c = 287 k

surface temperature of a person throughout the year = 32⁰c = 305 k

coefficient of heat transfer by natural convection (h)= 2 w /m^2 k

emissivity = 0.9

An explanation to the condition of feeling chilled during the winter and comfortable during summer  can be explained with the calculation below

The heat transfer from the surface body of a person the the room is carried out by convection and this can be calculated as

q = hΔt = 2 * ( 305  -  293) = 2 * 12 = 24 w /m^2

also calculate heat transfer through radiation using this formula

q_{rad} = εσ [ (Temperature of body)^4- (temperature of room at each season)^4 ]

ε = 0.90,(emissivity)    σ = 5.67 *10^-8 w/^2 . k ( Boltzmann's constant)

during summer :

q_{rad} = (0.90)*(5.67*10^-8)* ( 305^4 - 300^4 ) = 28.253 W/m^2

therefore the net heat transfer during the summer = 24 w/m^3 + 28.253 W/m^3 = 52.253 W/m^2

During winter :

q_{rad} = (0.90)*(5.67*10^-8) * ( 305^4 - 287^4 ) = 95.375 W/m^3

therefore the net heat transfer during the winter

= 24 w/m^3 + 95.375w/m^3 = 119.375 w/m^2

You might be interested in
A two-phase mixture of water and steam with a quality of 0.63 and T = 300F expands isothermally until only saturated vapor rema
VMariaS [17]

Answer:

Explanation:

Hello!

To solve this problem you must follow the following steps, which are fully registered in the attached image.

1. Draw the complete outline of the problem.

2. Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)

through prior knowledge of two other properties.

3. Use temodynamic tables to find the density of water in state 1, by means of temperature and quality, with this value and volume we can find the mass.

3. Use thermodynamic tables to find the internal energy in state 1 and two using temperature and quality.

4. uses the first law of thermodynamics that states that the energy in a system is always conserved, replaces the previously found values ​​and finds the work done.

5. draw the pV diagram using the 300F isothermal line

5 0
3 years ago
Alyssa works for an engineering firm that has been hired to design and supervise the construction of a highway bridge over a maj
Colt1911 [192]

Answer:

I'm going to make a list of everything you need to consider for the supervision and design of the bridge.

1. the materials with which you are going to build it.

2. the length of the bridge.

3. The dynamic and static load to which the bridge will be subjected.

4. How corrosive is the environment where it will be built.

5.wind forces

6. The force due to possible earthquakes.

7. If it is going to be built in an environment where snow falls.

8. The bridge is unique,so   the shape has a geometry that resists loads?.

9. bridge costs.

10. Personal and necessary machines.

11. how much the river grows

3 0
3 years ago
Carbon dioxide at 20°C flows in a pipe at a rate of 0.005 kg/s. Determine the minimum diameter required if the flow is laminar (
Vesna [10]

Answer:

the required diameter is 0.344 m

Explanation:

given data:

flow is laminar

flow of carbon dioxide Q = 0.005 Kg/s

for  flow to be laminar,  Reynold's number must be less than 2300 for pipe flow and it is given as

\frac{\rho VD}{\mu }

arrange above equation for diameter

\frac{\rho Q D}{\mu A }<2300

dynamic density of carbon dioxide = 1.47×10^{-5} Pa sec

density of carbon dioxide is 1.83 kg/m³

\frac{1.83\times 0.0056\times D}{1.47\times 10^{-5}\times \frac{\pi}{4} \times D^{2} }

\frac{1.83\times 0.0056}{1.47\times 10^{-5}\times \frac{\pi}{4} \times 2300}= D

D = 0.344 m

4 0
3 years ago
A long, circular aluminum rod is attached at one end to a heated wall and transfers heat by convection to a cold fluid.
Trava [24]

Answer:

a. Heat removal rate will increase

b. Heat removal rate will decrease

Explanation:

Given that

One end of rod is connected to the furnace and rod is long.So this rod can be treated as infinite long fin.

We know that heat transfer in fin given as follows

Q_{fin}=\sqrt{hPKA}\ \Delta T

We know that area

A=\dfrac{\pi}{4}d^2

Now when diameter will triples then :

A_f=\dfrac{\pi}{4}{\left (3d \right )}^2

A_f=9A

Q'_{fin}=\sqrt{9hPKA}\ \Delta T

Q'_{fin}=3\sqrt{hPKA}\ \Delta T

Q'_{fin}=3Q

So the new heat transfer will increase by 3 times.

Now when copper rod will replace by aluminium rod :

As we know that thermal conductivity(K) of Aluminium is low as compare to Copper .It means that heat transfer will decreases.

3 0
3 years ago
Exercise 2. Let X be a discrete random variable with the cumulative distribution function 0 x&lt;1  F(x)= 0.5 1≤x&lt;3 1 x≥
Ivahew [28]

Answer:

(1) Calculate the probability P {X ≤ 3} is 1

(2) Calculate the probability P {1 ≤ X ≤ 2} is 0.5

Explanation:

Find attached the calculation

6 0
3 years ago
Other questions:
  • To operate a vehicle in Florida, you must
    10·2 answers
  • Some designers suggest that speech recognition should be used in a telephone menu system. This would allow users to interact wit
    10·1 answer
  • End A of the uniform 5-kg bar is pinned freely to the collar, which has an acceleration = 4 m/s2 along the fixed horizontal shaf
    9·1 answer
  • A standby generator powered by and internal combustion engine has a rated capacity of 100kW. Assuming that the generator is 90%
    8·1 answer
  • Which timeline shows the correct order of contributions made to the discovery of DNA?
    6·2 answers
  • 8. What is the proper name of this starting system used on selected vertical crankshaft engines? Click here to enlarge image Sup
    12·1 answer
  • In the pressure filled driving environment, handicapping yourself by drinking and driving is not a good choice.
    9·1 answer
  • what do you expect the future trends of an operating system in terms of (a) cost (b) size (c) multitasking (d) portability (e) s
    12·1 answer
  • When converting liquid level units to sensor output signal units, you should first convert the liquid level units to _____ units
    15·1 answer
  • A mass of 2.4 kg of air at 150 kPa and 12ºC is contained in a gas-tight, frictionless piston-cylinder device. The air is now com
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!