Answer:
Yield strength, tensile strength decreases with increasing temperature and modulus of elasticity decreases with increasing in temperature.
Explanation:
The modulus of elasticity of a material is theoretically a function of the shape of curve plotted between the potential energy stored in the material as it is loaded versus the inter atomic distance in the material. The temperature distrots the molecular structure of the metal and hence it has an effect on the modulus of elasticity of a material.
Mathematically we can write,
![E(t)=E_o[1-a\frac{T}{T_m}]](https://tex.z-dn.net/?f=E%28t%29%3DE_o%5B1-a%5Cfrac%7BT%7D%7BT_m%7D%5D)
where,
E(t) is the modulus of elasticity at any temperature 'T'
is the modulus of elasticity at absolute zero.
is the mean melting point of the material
Hence we can see that with increasing temperature modulus of elasticity decreases.
In the case of yield strength and the tensile strength as we know that heating causes softening of a material thus we can physically conclude that in general the strength of the material decreases at elevated temperatures.
Answer:
Time taken by the
diameter droplet is 60 ns
Solution:
As per the question:
Diameter of the droplet, d = 1 mm = 0.001 m
Radius of the droplet, R = 0.0005 m
Time taken for complete evaporation, t = 1 min = 60 s
Diameter of the smaller droplet, d' = 
Diameter of the smaller droplet, R' = 
Now,
Volume of the droplet, V = 
Volume of the smaller droplet, V' = 
Volume of the droplet ∝ Time taken for complete evaporation
Thus

where
t' = taken taken by smaller droplet


t' = 
Answer:
The process which has friction
Explanation:
The entropy is simply the change in the state of the things or the molecules in the system. It is simply the change in the energy of the system with a focus on the atoms in the system. This is also known as the internal energy of the system and is given the symbol, G. The friction contributes to the change in the energy of the system. This is because friction generates another form of energy - that is heat energy. This energy causes the internal temperature id the system to increase. Hence the greater change in the temperature.
Hopefully that helps you out and is this for history or science?