Answer:
The stress in the rod is 39.11 psi.
Explanation:
The stress due to a pulling force is obtained dividing the pulling force by the the area of the cross section of the rod. The respective area for a cylinder is:
Replacing the diameter the area results:
Therefore the the stress results:
Answer:
a) The mechanical force is -226.2 N
b) Using the coenergy the mechanical force is -226.2 N
Explanation:
a) Energy of the system:
If i = 2A and g = 10 cm
b) Using the coenergy of the system:
Answer:
(a) dynamic viscosity =
(b) kinematic viscosity =
Explanation:
We have given temperature T = 288.15 K
Density
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120
= 291.15
when T = 288.15 K
For kinematic viscosity :
Answer:
24.72 kwh
Explanation:
Electric energy=potential energy=mgz where m is mass, g is acceleration due to gravity and z is the elevation.
Substituting the given values while taking g as 9.81 and dividing by 3600 to convert to per hour we obtain
PE=(108*9.81*84)/3600=24.72 kWh