1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
3 years ago
14

Water enters a leaky cylindrical tank (D = 1 ft) at a rate of 8 ft3/min. Water leaks out of the tank at a rate of 17% of the flo

w into the tank. At what rate will water rise in the tank (answer in ft/min)?
Engineering
1 answer:
stellarik [79]3 years ago
3 0

Answer:

Water would rise in the tank at a rate of 8.45 ft/min

Explanation:

Diameter of leaky cylindrical tank (D) = 1 ft

Base area = πD^2/4 = 3.142×1^2/4 = 0.7855 ft^2

Volumetric flow rate at which water enters the tank = 8 ft^3/min

Volumetric flow rate at which water leaks out = 0.17 × 8 = 1.36 ft^3/min

Volumetric flow rate at which water rises = 8 - 1.36 = 6.64 ft^3/min

Rate at which water would rise in ft/min = volumetric flow rate at which water rises ÷ base area of the cylinder = 6.64 ft^3/min ÷ 0.7855 ft^2 = 8.45 ft/min

You might be interested in
How can you do this 5.2.4: Rating?
gizmo_the_mogwai [7]

Answer:

whats the question

Explanation:

5 0
3 years ago
Ordan has _ 5 8 can of green paint and _ 3 6 can of blue paint. If the cans are the same size, does Jordan have more green paint
Morgarella [4.7K]

Answer:

Jordan has more green paints

Explanation:

Given

Green = \frac{5}{8}

Blue = \frac{3}{6}

Required

Which paint does he have more?

For better understanding, it's better to convert both measurements to decimal.

For the green paint:

Green = \frac{5}{8}

Green = 0.625

For the blue paint:

Blue = \frac{3}{6}

Blue = 0.5

By comparison:

0.625 > 0.5

<em>This means that Jordan has more green paints</em>

3 0
3 years ago
A 11-cm-diameter horizontal jet of water with a velocity of 40 m/s relative to the ground strikes a flat plate that is moving in
Reika [66]

Answer:

F = 8552.7N

Explanation:

We need first our values, that are,

V_{jet} = 40m/s\\V_{Plate} = 10m/s \\D = 11cm

We start to calculate the relative velocity, that is,

V_r = V_{jet}-V_{plate}\\V_r = (40)-(10)\\V_r = 30m/s

With the relative velocity we can calculate the mass flow rate, given by,

\dot{m}_r = \rho A V_r

\dot{m}_r = (1000)(30) \frac{\pi (0.11)^2}{4}

\dot{m}_r = 285.09kg/s

We need to define the Force in the direction of the flow,

\sum\vec{F} = \sum_{out} \beta\dot{m}\vec{V} - \sum_{in} \beta\dot{m} \vec{V}\\

F = \dot{m}V_r

F = (285.09Kg/s)(30)

F = 8552.7N

8 0
3 years ago
Machine movement can be divided into what two main categories?
pishuonlain [190]

Answer:

motion and power

Explanation:

8 0
3 years ago
Read 2 more answers
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
Other questions:
  • Your program should read from an input file, which will contain one or more test cases. Each test case consists of one line cont
    14·1 answer
  • Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The co
    11·1 answer
  • Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1200 K to a cold reservoir at 600 K. Calculate the
    15·1 answer
  • suppose we number the bytes in a w-bit word from 0 (less significant) to w/8-1 (most significant). write code for the followign
    11·1 answer
  • A wastewater treatment plant has two primary clarifiers, each 20m in diameter with a 2-m side-water depth. the effluent weirs ar
    8·1 answer
  • Plz answer all of these questions!
    15·1 answer
  • Dalton needs to prepare a close-out report for his project. Which part of the close-out report would describe
    6·1 answer
  • Shelly cashman word 2016 module 2 - project a pdf - does anyone have the fished paper
    11·1 answer
  • What major financial flop led to the end of the Sega Dreamcast and ultimately caused Sega to stop making game consoles altogethe
    15·1 answer
  • 19. A circuit contains four 100 S2 resistors connected in series. If you test the circuit with a digital VOM,
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!