1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
3 years ago
14

Water enters a leaky cylindrical tank (D = 1 ft) at a rate of 8 ft3/min. Water leaks out of the tank at a rate of 17% of the flo

w into the tank. At what rate will water rise in the tank (answer in ft/min)?
Engineering
1 answer:
stellarik [79]3 years ago
3 0

Answer:

Water would rise in the tank at a rate of 8.45 ft/min

Explanation:

Diameter of leaky cylindrical tank (D) = 1 ft

Base area = πD^2/4 = 3.142×1^2/4 = 0.7855 ft^2

Volumetric flow rate at which water enters the tank = 8 ft^3/min

Volumetric flow rate at which water leaks out = 0.17 × 8 = 1.36 ft^3/min

Volumetric flow rate at which water rises = 8 - 1.36 = 6.64 ft^3/min

Rate at which water would rise in ft/min = volumetric flow rate at which water rises ÷ base area of the cylinder = 6.64 ft^3/min ÷ 0.7855 ft^2 = 8.45 ft/min

You might be interested in
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu
Sonja [21]

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

5 0
4 years ago
The article provides information by using a list. What does it list? A. Thanksgiving food B. places where clams can be found C.
Gelneren [198K]

Answer:

C

Explanation:

7 0
3 years ago
Which option identifies what engineers will do to help in the following scenario?
Tasya [4]

Answer:

a

Explanation:

4 0
3 years ago
Read 2 more answers
Steam enters a turbine from a 2 inch diameter pipe, at 600 psia, 930 F, with a velocity of 620 ft/s. It leaves the turbine at 12
Katarina [22]

Answer:

\dot W_{out} = 3374.289\,\frac{BTU}{s}

Explanation:

The model for the turbine is given by the First Law of Thermodynamics:

- \dot W_{out} + \dot m \cdot (h_{in} - h_{out}) = 0

The turbine power output is:

\dot W_{out} = \dot m\cdot (h_{in}-h_{out})

The volumetric flow is:

\dot V = \frac{\pi}{4} \cdot \left( \frac{2}{12}\,ft \right)^{2}\cdot (620\,\frac{ft}{s} )

\dot V \approx 13.526\,\frac{ft^{3}}{s}

The specific volume of steam at inlet is:

State 1 (Superheated Steam)

\nu = 1.33490\,\frac{ft^{3}}{lbm}

The mass flow is:

\dot m = \frac{\dot V}{\nu}

\dot m = \frac{13.526\,\frac{ft^{3}}{s} }{1.33490\,\frac{ft^{3}}{lbm} }

\dot m = 10.133\,\frac{lbm}{s}

Specific enthalpies at inlet and outlet are, respectively:

State 1 (Superheated Steam)

h = 1479.74\,\frac{BTU}{lbm}

State 2 (Saturated Vapor)

h = 1146.1\,\frac{BTU}{lbm}

The turbine power output is:

\dot W_{out} = (10.133\,\frac{lbm}{s} )\cdot (1479.1\,\frac{BTU}{lbm}-1146.1\,\frac{BTU}{lbm})

\dot W_{out} = 3374.289\,\frac{BTU}{s}

6 0
3 years ago
Biomedical, electrical and civil engineering essay
ArbitrLikvidat [17]

Answer:

7th A good time for you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my replying sooner than later this month to you arshpreet May God bless you live a long life of shapes in which class do read it and I am asking you are nagre andg my

3 0
3 years ago
Other questions:
  • The density of oxygen contained in a tank is 2.0 kg/m3 when the temperature is 25 °C. Determine the gage pressure of the gas if
    12·1 answer
  • Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate o
    15·2 answers
  • An AC sine wave has an effective value of 100V what’s the peak value of the waveform
    6·1 answer
  • Compute the thermal efficiency for an ideal gas turbine cycle that operates with a pressure ratio of 6.75 and uses helium gas.
    12·1 answer
  • Can some one help me with this plumbing question. Even just a guess.<br> Plz no shady links
    11·2 answers
  • A machine used to shred cardboard boxes for composting has a first cost of $10,000, an AOC of $7000 per year, a 3-year life, and
    14·1 answer
  • Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
    7·1 answer
  • If a condenser has high head pressure and a higher than normal temperature, a technician could ____.
    7·1 answer
  • Whats the purpose of the keyway
    13·1 answer
  • Why is the back-work ratio much higher in the brayton cycle than in the rankine cycle?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!