Answer:
pH 8.89
Explanation:
English Translation
If the MgCl₂ solution of 0.2 M has its pH raised by adding NH₄OH, the precipitate will begin to form at a pH of approximately.
Given the solubility product (Ksp) of Mg(OH)₂ = 1.2 x 10⁻¹¹
Assuming all of the salts involved all ionize completely
MgCl₂ ionizes to give Mg²⁺ and Cl⁻
MgCl₂ ⇌ Mg²⁺ + 2Cl⁻
1 mole of MgCl₂ gives 1 moles of Mg²⁺
Since the concentration of Mg²⁺ is the same as that of MgCl₂ = 0.2 M
Mg(OH)₂ is formed from 1 stoichiometric mole of Mg²⁺ and 2 stoichiometric moles of OH⁻
Ksp Mg(OH)₂ = [Mg²⁺][OH⁻]²
(1.2 x 10⁻¹¹) = 0.2 × [OH⁻]²
[OH⁻]² = (6×10⁻¹¹)
[OH⁻] = √(6×10⁻¹¹)
[OH⁻] = 0.000007746 M
p(OH) = - log [OH⁻] = - log (0.000007746)
pOH = 5.11
pH + pOH = 14
pH = 14 - pOH = 14 - 5.11 = 8.89
Hope this Helps!!!
Answer:
The density of the metal is 0.561 g/mL
Explanation:
The computation of the density of the metal is shown below;
As we know that
The Density of the metal is

where,
Mass = 4.9g
Change in volume = 6.9 mL
Now place these values to the above formula
So, the density of the metal is

= 0.561 g/mL
Hence, the density of the metal is 0.561 g/mL
We simply applied the above formula so that the correct density could arrive
Answer:
1: due to difference in reactivity and melting point
2 during the reaction both combine with oxygen in this case magnesium remain solid but some potassium vaporise
Answer:
7.35 - 7.45
Explanation:
The pH scale ranges from 0 (strongly acidic) to 14 (strongly basic or alkaline). A pH of 7.0, in the middle of this scale, is neutral. Blood is normally slightly basic, with a normal pH range of about 7.35 to 7.45. Usually, the body maintains the pH of blood close to 7.40.
Hope this helps