Answer:
faster; more kinetic energy
Explanation:
Answer:
Part(a): the capacitance is 0.013 nF.
Part(b): the radius of the inner sphere is 3.1 cm.
Part(c): the electric field just outside the surface of inner sphere is
.
Explanation:
We know that if 'a' and 'b' are the inner and outer radii of the shell respectively, 'Q' is the total charge contains by the capacitor subjected to a potential difference of 'V' and '
' be the permittivity of free space, then the capacitance (C) of the spherical shell can be written as

Part(a):
Given, charge contained by the capacitor Q = 3.00 nC and potential to which it is subjected to is V = 230V.
So the capacitance (C) of the shell is

Part(b):
Given the inner radius of the outer shell b = 4.3 cm = 0.043 m. Therefore, from equation (1), rearranging the terms,

Part(c):
If we apply Gauss' law of electrostatics, then

Answer:
a = 0.45 m/s²
Explanation:
The given question is ''Calculate the acceleration that produces a force of 40 N on a body with 88 kg of mass".
Given that,
Force, F = 40 N
Mass of the body, m = 88 kg
The net force acting on the body is given by :
F = ma
Where
a is the acceleration of the body

So, the required acceleration is 0.45 m/s².
Answer:
The centripetal acceleration of the runner is
.
Explanation:
Given that,
A runner completes the 200 m dash in 24.0 s and runs at constant speed throughout the race. We need to find the centripetal acceleration as he runs the curved portion of the track. We know that the centripetal acceleration is given by :

v is the velocity of runner

Centripetal acceleration,

So, the centripetal acceleration of the runner is
. Hence, this is the required solution.