1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aivan3 [116]
2 years ago
7

12. For which of the following quadratic equations are the roots 2 and 57

Mathematics
1 answer:
podryga [215]2 years ago
3 0

Answer: x²-59x+114=0

explanation:

If the roots are 2 and 57, then:-

sum of roots = 2+57 = 59

and, product of roots = 2×57 = 114

the quadratic equation is given by,

x²-(sum of roots)x+(product of roots)=0

so, x²-59x+114=0 will be the desired quadratic equation.

so, none of the options are correct.

the correct answer is x²-59x+114=0.

#SPJ2

You might be interested in
Rationalise the denominator.<br>1/√5+√2​
Pani-rosa [81]

Answer:

Exact Form:

  √5 + 5√2

__________

       5

Decimal Form:

1.86142715

…

Step-by-step explanation:

N/A

3 0
2 years ago
Read 2 more answers
amortization for house costs 35,000.00 at 6.5% interest for 10 years and payments of 400.00 were paid for 36 months what is the
UNO [17]

Answer:

$26,640.22

Step-by-step explanation:

8 0
2 years ago
There are 25 servings in a 12.5 ounce bottle of olive oil. How many ounces are in a serving?
sammy [17]

Answer:

2 ounces

Step-by-step explanation:

25/12.5 = 2

3 0
3 years ago
Read 2 more answers
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Help with this question, ASAP!!
allochka39001 [22]

Answer:

The answer to your question is the third option

Step-by-step explanation:

a)               0.023x³ + 0.4x² - 2.1x + 8.3

                 0.023(2)³ + 0.4(2)² - 2.1(2) + 8.3

                 0.023(8) + 0.4(4) - 2.1(2) + 8.3

                 0.184 + 1.6 - 4.2 + 8.3

                 10.084 - 4.2

                 5.884

b)              0.023(4)³ + 0.4(4)² - 2.1(4) + 8.3          

                 0.023(64) + 0.4(16) - 8.4 + 8.3

                 1.472 + 6.4 - 8.4 + 8.3

                 16.172 - 8.4

                7.772

3 0
3 years ago
Read 2 more answers
Other questions:
  • If the base is 4, what is the value if the exponent is 2? What if the exponent is -2?
    12·2 answers
  • Berkley has 10 pieces of ribbon that are 2 yards each. She uses 8 pieces that are each 3 feet long. How many feet of ribbon does
    15·2 answers
  • An open cylinderical tank of radius 70cm contains 385 liters of a liquid find the volume of liquid In a tank
    10·1 answer
  • What is the volume of a 1 cm by 2 cm by 3 cm box? I got 216 cm.
    5·2 answers
  • A bag contains white marbles and red marbles, 20 in total. The number of white marbles is 4 less than 2 times the number of red
    5·1 answer
  • 2=5-5x (your answer must include the variable)
    8·1 answer
  • Pls help i am stuck on this
    5·1 answer
  • Put these numbers in order of their distance from 0 on the number line, starting with the smallest distance. -26,-12.7,-9/2,2/10
    6·1 answer
  • Your 6 and 2/3 year investment of $1,450 at 5.4% compounded monthly brought you a grand total of?
    6·1 answer
  • Give the types of quantities
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!