Answer:
True
Explanation:
kinetic energy is proportional to temperature
<h2>
<em><u>⇒</u></em>Answer:</h2>
In the standing broad jump, one squats and then pushes off with the legs to see how far one can jump. Suppose the extension of the legs from the crouch position is 0.600 m and the acceleration achieved from this position is 1.25 times the acceleration due to gravity, g . How far can they jump? State your assumptions. (Increased range can be achieved by swinging the arms in the direction of the jump.)
Step-by-Step Solution:
Solution 35PE
This question discusses about the increased range. So, we shall assume that the angle of jumping will be as the horizontal range is maximum at this angle.
Step 1 of 3<
/p>
The legs have an extension of 0.600 m in the crouch position.
So, m
The person is at rest initially, so the initial velocity will be zero.
The acceleration is m/s2
Acceleration m/s2
Let the final velocity be .
Step 2 of 3<
/p>
Substitute the above given values in the kinematic equation ,
m/s
Therefore, the final velocity or jumping speed is m/s
Explanation:
Answer:
satisfaction, enjoyment and fair play
Answer: A negatively-charged ion always has more electrons than protons
Explanation:
First, we know that the elementary negative charge is the electron, while the positive one is the proton. Such that both have the same charge in magnitude, but a different sign. Such that if we have the same number of electrons and protons in an atom, the charge of this atom will be neutral.
And an ion is an atom with a different number of electrons and protons, so the charge of the atom is not neutral.
Then if we have a negatively-charged ion, the charge of this atom is negative. Then we must have a larger number of electrons (the negative ones) than protons (the positive ones)
Then the correct option is:
A negatively-charged ion always has more electrons than protons
Explanation:
Average power = change in energy / change in time
P = ΔE / Δt
P = (½ mv²) / t
P = (½ (0.825 kg) (0.620 m/s)²) / (0.021 s)
P = 7.55 Watts