Answer:
the Arrow X shows the direction of amplitude
Explanation:
As the amplitude is the maximum displacement of a wave from the mean position
The answer to this is A. this is because, refraction with a light or sound wave changing its direction involve propagation,(in which propagation is the change in direction of a light or sound wave)
1) In the first case, the correct answer is
<span>A.Wavelengths measured would match the actual wavelengths emitted.
In fact, the stars are not moving relative to Earth, so there is no shift in the measured wavelength.
2) In this second case, the correct answer is
</span><span>A.Wavelengths measured would be shorter than the actual wavelengths emitted.
</span>in fact, since the stars in this case are moving towards the Earth, then apparent frequency of their emitted light will be larger than the actual frequency, because of the Doppler effect, according to the formula:

where f0 is the actual frequency, f' the apparent frequency, c the speed of light and vs the velocity of the source (the stars) relative to the obsever (Earth). Vs is negative when the source is moving towards the observer, so the apparent frequency f' is larger than the actual frequency f0. But the wavelength is inversely proportional to the frequency, so the apparent wavelength will be shorter than the actual wavelength.
<h2><u>We have</u>,</h2>
- Initial velocity (u) = 0 m/s
- Time taken (t) = 2.9s
- Acceleration due to gravity (g) = + 10 m/s² [Down]
<h2><u>To calculate</u>,</h2>
- Final velocity (v)
- Height (h)
<h2><u>Solution</u><u>,</u></h2>
→ v = u + gt
→ v = 0 + 10(2.9)
→ v = 29 m/s
… ( Ans )
And,
→ h = ut + ½gt²
→ h = 0(2.9) + ½ × 10 × (2.9)²
→ h = 5 × 8.41
→ h = 42.05 m
… ( Ans )
Answer:
6 N
Explanation:
= Mass flow rate = 1 kg/s
v = Final velocity = 6 m/s
u = Initial velocity = 0 m/s
Force is obtained when we divide change in momentum by time

The force the person exert on the extinguisher in order to prevent it from accelerating is 6 N