I believe the correct answer from the choices listed above is option D. The proportion of carbon-14 in an organism is useful in figuring out the age of that organism after it dies because <span>the proportion of carbon-14 slowly decreases after the death of the organism. Hope this answers the question.</span>
Answer:
At a deceleration of 60g, or 60 times the acceleration due to gravity a person will travel a distance of 0.38 m before coing to a complete stop
Explanation:
The maximum acceleration of the airbag = 60 g, and the duration of the acceleration = 36 ms or 36/1000 s or 0.036 s
To find out how far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60g
we write out the equation of motion thus.
S = ut + 0.5at²
wgere
S = distance to come to complete stop
u = final velocoty = 0 m/s
a = acceleration = 60g = 60 × 9.81
t = time = 36 ms
as can be seen, the above equation calls up the given variable as a function of the required variable thus
S = 0×0.036 + 0.5×60×9.81×0.036² = 0.38 m
At 60g, a person will travel a distance of 0.38 m before coing to a complete stop
what happens at Point C is sublimation. the increase in temperature affects the Vapour pressure soon as you can see the curve is increasing with increasing pressure there is increase in temperature that is the sublimation Curve
Answer:
GPE = 388.08 Joules.
Explanation:
Given the following data;
Mass = 0.550kg
Speed = 335 m/s
Height = 72 meters
We know that acceleration due to gravity, g is equal to 9.8 m/s²
To find the gravitational potential energy;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
G.P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Substituting into the formula, we have;

GPE = 388.08 Joules.
Answer:
The required pressure is 6.4866 atm.
Explanation:
The given data : -
In the afternoon.
Initial pressure of tire ( p₁ ) = 7 atm = 7 * 101.325 Kpa = 709.275 Kpa
Initial temperature ( T₁ ) = 27°C = (27 + 273) K = 300 K
In the morning .
Final temperature ( T₂ ) = 5°C = ( 5 + 273 ) K = 278 K
Given that volume remains constant.
To find final pressure ( p₂ ).
Applying the ideal gas equation.
p * v = m * R * T


= 657.2615 Kpa = 6.486 atm