Answer:
No
Explanation:
Not all metals stick to magnets. Like aluminum. if you were to stick a magnet on to an aluminum it would fall off.
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:

I’m pretty sure the answer is C. Any change of state or movement requires energy
Answer:
When argon changes from a gas to a liquid, the forces between the molecules become stronger so the particles become closer together and come into come into contact more often. The particles move at a less faster rate as the have less kinetic energy due to decrease in temperature. When argon changes from a liquid to a solid, the forces become even stronger so the particles are arranged in fixed positions and vibrate around a fixed point as they cannot move past each other