<h2>Answer with Explanation </h2>
Dalton’s theory can be classified by the following hypotheses:
1) All material was formed of particles, unbreakable and strong construction segments.
2) All particles of a given component are indistinguishable in volume and characteristics
3) Compounds are determined by a mixture of two or more distinct kinds of atoms.
4) Chemical responses appeared in the rearrangement of the reacting atoms.
This theory was to explain all matter in terms of atoms and their characteristics, the law of conservation of volume and the law of constant composition.
Answer:
, level is rising.
Explanation:
Since liquid water is a incompresible fluid, density can be eliminated of the equation of Mass Conservation, which is simplified as follows:


By replacing all known variables:

The positive sign of the rate of change of the tank level indicates a rising behaviour.
Answer:
0 N.
Explanation:
Force: This can be defined as the product of mass and the acceleration of the body. The S.I unit of force is Newton (N).
The expression of net force when both force act in the different direction is given as
F' = W-F ........................ Equation 1
Where F' = Net force on the bag, W = gravitational force on the bag, F = Force acting upward on the bag
Given: W = 18 N, F = 18 N.
Substitute into equation 1
F' = 18-18
F' = 0 N.
Hence the net force = 0 N.
Answer:
(a) 2.85 m
(b) 16.5 m
(c) 21.7 m
(d) 22.7 m
Explanation:
Given:
v₀ₓ = 19 cos 71° m/s
v₀ᵧ = 19 sin 71° m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
(a) Find Δy when t = 3.5 s.
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (19 sin 71° m/s) (3.5 s) + ½ (-9.8 m/s²) (3.5 s)²
Δy = 2.85 m
(b) Find Δy when vᵧ = 0 m/s.
vᵧ² = v₀ᵧ² + 2 aᵧ Δy
(0 m/s)² = (19 sin 71° m/s)² + 2 (-9.8 m/s²) Δy
Δy = 16.5 m
(c) Find Δx when t = 3.5 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.5 s) + ½ (0 m/s²) (3.5 s)²
Δx = 21.7 m
(d) Find Δx when Δy = 0 m.
First, find t when Δy = 0 m.
Δy = v₀ᵧ t + ½ aᵧ t²
(0 m) = (19 sin 71° m/s) t + ½ (-9.8 m/s²) t²
0 = t (18.0 − 4.9 t)
t = 3.67
Next, find Δx when t = 3.67 s.
Δx = v₀ₓ t + ½ aₓ t²
Δx = (19 cos 71° m/s) (3.67 s) + ½ (0 m/s²) (3.67 s)²
Δx = 22.7 m
Answer:
The second kinetic energy is 162 J.
Explanation:
Given that,
Mass, 
Velocity, 
Kinetic energy, 
Mass, 
Velocity, 
We need to find kinetic energy
. Kinetic energy is given by :

So,

So, the second kinetic energy is 162 J.