Question:<em> </em><em>Find, separately, them mass of the balloon and the basket (incidentally, most of the balloon's mass is air)</em>
Answer:
The mass of the balloon is 2295 kg, and the mass of the basket is 301 kg.
Explanation:
Let us call the mass of the balloon
and the mass of the basket
, then according to newton's second law:
,
where
is the upward acceleration, and
is the net propelling force (counts the gravitational force).
Also, the tension
in the rope is 79.8 N more than the basket's weight; therefore,

and this tension must equal


Combining equations (2) and (3) we get:

since
, we have

Putting this into equation (1) and substituting the numerical values of
and
, we get:


Thus, the mass of the balloon and the basket is 2295 kg and 301 kg respectively.
Explanation:
F net of sled = Tension force by rope - Kinetic friction between ground.
F normal of sled = mg = (67kg)(9.81kg/m^2) = 657.27N.
Kinetic friction = 0.18 (I cannot see the value) * Normal force of sled = 0.18 * 657.27N = 118.31N
So F net of sled = 800N - 118.31N = 681.69N.
(I cannot see what the question is asking for, please check on your own!)
Answer:
At Saturn's center is a dense core of metals like iron and nickel surrounded by rocky material and other compounds solidified by the intense pressure and heat. It is enveloped by liquid metallic hydrogen inside a layer of liquid hydrogen—similar to Jupiter's core but considerably smaller
Explanation:
The power developed is 500 W ( to the nearest Watt)
Power(P) is the rate at which work is done. Work done (W) is the product of the force applied on the object and the displacement (s) made by the point of application of the force.


Therefore,

Substitute the given values of force , displacement and time


Thus the Power can be rounded off to the nearest value of 500 W
The acceleration due to gravity is given as:
g = GM/r²
<h3>
Derivation of gravitational acceleration:</h3>
According to Newton's second law of motion,
F = ma
where,
F = force
m = mass
a = acceleration
According to Newton's law of gravity,
F<em>g </em>= GMm/(r + h)²
F<em>g = </em>gravitational force
From Newton's second law of motion,
F<em>g </em>= ma
a = F<em>g</em>/m
We can refer to "a" as "g"
a = g = GMm/(m)(r + h)²
g = GM/(r + h)²
When the object is on or close to the surface, the value of g is constant and height has no considerable impact. Hence, it can be written as,
g = GM/r²
Learn more about gravitational acceleration here:
brainly.com/question/2142879
#SPJ4