Centripetal acceleration of car is given by formula

now plug in the values in this


Part b)
At position A we have
x component of acceleration is given as


Part c)
At position A we have
y component of acceleration is given as


Part d)
At position B we have
x component of acceleration is given as


Part e)
At position B we have
Y component of acceleration is given as


The effective height of the water for Smith's house will be 24.61m.
<h3>How to calculate the height?</h3>
Based on the information given, the volume of the water in sphere will be:
= 4/3πr³ = (5.80 × 10^5)/1000
= 4.18r³ = 580
r³ = 138.7
r = 5.18m
The effective height of the water will be:
= 18.0 + 2(5.18)
= 28.36
The gauge pressure at Faucet of Jones house will be:
= pgh
= 1000(9.8)(28.36)
= 277.9kPa
The effective height of the water for Smith's house will be:
= 18.0 + 2(5.18) - 3.75
= 24.61m
The gauge pressure at Faucet of Jones house will be:
= 1000 × 9.8 × 24.61
= 241.2kPa
Learn more about height on:
brainly.com/question/983412
#SPJ1
Answer:5.13333333...
Explanation: 7.7 is the distance and an hour and a half is the average speed. You would have to divide the total distance by the total time. So it would be 7.7 divided by 1.5 which would equal 5.13333333333...
The frequency of the light source is 1.5 x 10¹⁵ Hz.
<h3>
Frequency of the light source</h3>
The frequency of the light source is determined using the following equations;
c = fλ
where;
c is speed of light
f is the frequency
λ is the wavelength
f = (3 x 10⁸) / (2 x 10⁻⁷)
f = 1.5 x 10¹⁵ Hz
Thus, the frequency of the light source is 1.5 x 10¹⁵ Hz.
Learn more about frequency of light here: brainly.com/question/10728818
Answer:
frequency is 195.467 Hz
Explanation:
given data
length L = 4.36 m
mass m = 222 g = 0.222 kg
tension T = 60 N
amplitude A = 6.43 mm = 6.43 ×
m
power P = 54 W
to find out
frequency f
solution
first we find here density of string that is
density ( μ )= m/L ................1
μ = 0.222 / 4.36
density μ is 0.050 kg/m
and speed of travelling wave
speed v = √(T/μ) ...............2
speed v = √(60/0.050)
speed v = 34.64 m/s
and we find wavelength by power that is
power = μ×A²×ω²×v / 2 ....................3
here ω is wavelength put value
54 = ( 0.050 ×(6.43 ×
)²×ω²× 34.64 ) / 2
0.050 ×(6.43 ×
)²×ω²× 34.64 = 108
ω² = 108 / 7.160 ×
ω = 1228.16 rad/s
so frequency will be
frequency = ω / 2π
frequency = 1228.16 / 2π
frequency is 195.467 Hz