Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer:
angular acceleration is -0.2063 rad/s²
Explanation:
Given data
mass m = 95.2 kg
radius r = 0.399 m
turning ω = 93 rpm
radial force N = 19.6 N
kinetic coefficient of friction μ = 0.2
to find out
angular acceleration
solution
we know frictional force that is = radial force × kinetic coefficient of friction
frictional force = 19.6 × 0.2
frictional force = 3.92 N
and
we know moment of inertia that is
γ = I ×α = frictional force × r
so
γ = 1/2 mr²α
α = -2f /mr
α = -2(3.92) /95.2 (0.399)
α = - 7.84 / 37.9848 = -0.2063
so angular acceleration is -0.2063 rad/s²
Answer:
the pressure at the depth is 1.08 × Pa
Explanation:
The pressure at the depth is given by,
P = h g
Where, P = pressure at the depth
h = depth of the Pacific Ocean in the Mariana Trench = 36,198 ft = 11033.15 meter
= density of water = 1000
g = acceleration due to gravity ≈ 9.8
P = 11033.15 × 9.8 × 1000
P = 1.08 × Pa
Thus, the pressure at the depth is 1.08 × Pa
Answer
given,
V = 2 L
the left is an ideal gas at P = 100 k Pa and T = 500 K
mass is constant
Pressure is same because it's not changing due to process
m = 1.39 x 10⁻³ Kg
Answer:Frequency = 3.525 Hertz
Explanation:In static equilibrium, kd =mg
Where k= effective spring constant of the spring.
mg= The weight of the car.
d= static deflection.
Therefore, w =SQRTg/d
w = SQRT 9.81/0.02
w= 22.15 rad/sec
Converting to Hertz unit for frequency
1 rad/s = 0.1591
22.15rad/s=?
22.15 × 0.1591= 3.525 hertz