Answer:
An object's acceleration depends on its mass and on the net force acting on it.
Explanation:
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
The specific heat of the unknown substance with a mass of 0.158kg is 0.5478 J/g°C
HOW TO CALCULATE SPECIFIC HEAT CAPACITY:
The specific heat capacity of a substance can be calculated using the following formula:
Q = m × c × ∆T
Where;
- Q = quantity of heat absorbed (J)
- c = specific heat capacity (4.18 J/g°C)
- m = mass of substance
- ∆T = change in temperature (°C)
According to this question, 2,510.0 J of heat is required to heat the 0.158kg substance from 32.0°C to 61.0°C. The specific heat capacity can be calculated:
2510 = 158 × c × (61°C - 32°C)
2510 = 4582c
c = 2510 ÷ 4582
c = 0.5478 J/g°C
Therefore, the specific heat capacity of the unknown substance that has a mass of 0.158 kg is 0.5478 J/g°C.
Learn more about specific heat capacity at: brainly.com/question/2530523
Answer:
21.3 V, 1.2 A
Explanation:
1.
These resistors are in series, so the net resistance is:
R = R₁ + R₂ + R₃
R = 20 + 30 + 45
R = 95
So the current is:
V = IR
45 = I (95)
I = 9/19
So the voltage drop across R₃ is:
V = IR
V = (9/19) (45)
V ≈ 21.3 V
2.
First, we need to find the equivalent resistance of R₂ and R₃, which are in parallel:
1/R₂₃ = 1/R₂ + 1/R₃
1/R₂₃ = 1/10 + 1/10
R₂₃ = 5
Now we find the overall resistance by adding the resistors in series:
R = R₁ + R₂₃ + R₄
R = 10 + 5 + 10
R = 25
So the current through R₁ is:
V = IR
30 = I (25)
I = 1.2 A
Newton's first law of motion.
Answer:
alcohol thermometer is preferred for a very cold region. Alcohol thermometer is preferred for a very cold region because its freezing point of alcohol is - 117°C. So, it can measure the temperature of the very cold region.