Answer:
The distance covered by puck A before collision is 
Explanation:
From the question we are told that
The label on the two hockey pucks is A and B
The distance between the two hockey pucks is D 18.0 m
The speed of puck A is 
The speed of puck B is 
The distance covered by puck A is mathematically represented as

=> 
The distance covered by puck B is mathematically represented as

=> 
Since the time take before collision is the same

substituting values

=> 
=> 
Answer:

Explanation:
We know that the tangent function relates the angle of the right triangle that forms the hot air balloon rising:

Differentiating (1) with respect to time, we get:

since x is a constant value. Replacing:

Answer:
B. The same on the moon.
Explanation:
The density of an object is the ratio of the mass contained by the object to the volume occupied by that mass.

When the object is taken from the earth to anywhere in the universe, its mass remains constant. The dimensions of the object and hence its volume also remains constant anywhere in the universe.
Therefore, the density of the object will also remain the same as it depends upon the mass and the volume of the object.
So, the correct option is:
<u>B. The same on the moon.</u>
Assuming that you mean to ask <em>. . . "What is 7.4 </em><u><em>as a fraction</em></u><em> in simplest form</em>?"
7.4 = 7 and 4/10
4/10 can be reduced to 2/5
7 represents = (7*5)/5 = 35/5
so . . 7 + 4/10 = 35/5 + 2/5 = 37/5 (improper fraction in simplest form)
or
. . . . 7 + 4/10 = 7 2/5 (mixed fraction in simplest form)
Answer:
the number of lines is 526
Explanation:
The wavelength λ =600nm = 600 × 10⁻⁶ mm
The diffraction angle θ = 39°
Recall the expression for the relation between the wavelength, angle and central maxima distance.
Recall the expression for the relation between the wavelength, angle and central maxima distance.
Recall the expression for the relation between the wavelength, angle and central maxima distance.
relation between the wave length, angle and central maxima distance
d = nλ / sinθ
Here n = 2 for second order maxima and d is the distance
= 2(600 × 10⁻⁶) / sin 39°
= 1200 × 10⁻⁶ / 0.6293
= 1.9 × 10⁻³ mm
N = 1/d
= 1 / 1.9 × 10⁻³
= 526
The grating has a line density of 526 lines per millimeter