a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
D all of the above applies to the functions of the nervous system.
D. 5.0A because this is right and will lead to the right answer okay you got this girl letssssss goooo googoggo Gogol
Explanation:
The third class lever cannot magnify our force because in third class lever the effort it between the load and the fulcrum. Also, in this type of lever no matter where the force is applied, it is always greater than the force of load. Hence, That type of lever cannot magnify our force.