1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
6

G to ml,density=3.291 g/ml

Physics
1 answer:
olya-2409 [2.1K]3 years ago
7 0
The density value 3.291 g/ml (gram / milliliter) in words is "three point two nine one g/ml (gram / milliliter)".
=)
You might be interested in
How do particles move when a transverse wave passes through a medium?
bagirrra123 [75]
<span> In </span>transverse waves<span>, </span>particles<span> of the</span>medium<span> vibrate </span>to<span> and from in a direction perpendicular </span>to<span> the direction of energy transport. </span>
4 0
4 years ago
How does the function of the parts of the system contribute to its function as a whole
oksano4ka [1.4K]
Answer and explanation: Just as the organs in an organ system work together to accomplish their task, so the different organ systems also cooperate to keep the body running. For example, the respiratory system and the circulatory system work closely together to deliver oxygen to cells and to get rid of the carbon dioxide the cells produce.
4 0
2 years ago
A huge tank of glycerine with a density of 1.260 g/cm3 is vertically stationed on a platform which is 15 m above the ground. The
EleoNora [17]

Answer:

The tank is losing 4.976*10^{-4}  m^3/s

v_g = 19.81 \ m/s

Explanation:

According to the Bernoulli’s equation:

P_1 + 1 \frac{1}{2} \rho v_1^2 + \rho gh_1 = P_2 +  \frac{1}{2}  \rho v_2^2 + \rho gh_2

We are being informed that both the tank and the hole is being exposed to air :

∴ P₁ = P₂

Also as the tank is voluminous ; we take the initial volume  v_1 ≅ 0 ;

then v_2 can be determined as:\sqrt{[2g (h_1- h_2)]

h₁ = 5 + 15 = 20 m;

h₂ = 15 m

v_2 = \sqrt{[2*9.81*(20 - 15)]

v_2 = \sqrt{[2*9.81*(5)]

v_2= 9.9 \ m/s  as it leaves the hole at the base.

radius r = d/2  = 4/2 = 2.0 mm

(a) From the law of continuity; its equation can be expressed as:

J = A_1v_2

J = πr²v_2    

J =\pi *(2*10^{-3})^{2}*9.9

J =1.244*10^{-4}  m^3/s

b)

How fast is the water from the hole moving just as it reaches the ground?

In order to determine that; we use the relation of the velocity from the equation of motion which says:

v² = u² + 2gh ₂

v² = 9.9² + 2×9.81×15

v² = 392.31

The velocity of how fast the water from the hole is moving just as it reaches the ground is : v_g = \sqrt{392.31}

v_g = 19.81 \ m/s

4 0
3 years ago
A bicycle rider has a speed of 19.0 m/s at a height of 55.0 m above sea level when he begins coasting down hill. The mass of the
lukranit [14]

Answer:

The mechanical energy of the rider at any height will be 6.34 × 10⁴ J.

Explanation:

Hi there!

The mechanical energy of the rider is calculated as the sum of the gravitational potential energy plus the kinetic energy. Since there are no dissipative forces (like friction), the mechanical energy of the rider at a height of 55.0 m above the sea level will be the same at a height of 25.0 m (or at any height), because the loss in potential energy will be compensated by a gain in kinetic energy, according to the law of conservation of energy.

Then, calculating the potential and kinetic energy at 55.0 m and 19 m/s, we can obtain the mechanical energy that will be constant:

Mechanical energy = PE + KE

Where:

PE = potential energy.

KE = kinetic energy.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity.

h = height.

Then, the potential energy of the rider will be:

PE = 88.0 kg · 9.81 m/s² · 55.0 m = 4.75 × 10⁴ J

The kinetic energy is calculated as follows:

KE = 1/2 · m · v²

Where "m" is the mass of the object and "v" its velocity. Then:

KE = 1/2 · 88.0 kg · (19.0 m/s)²

KE = 1.59 × 10⁴ J

The mechanical energy of the rider will be:

Mechanical energy = PE + KE = 4.75 × 10⁴ J + 1.59 × 10⁴ J = 6.34 × 10⁴ J

This mechanical energy is constant because when the rider coast down the hill, its potential energy is being converted into kinetic energy, so that the sum of potential energy plus kinetic energy remains constant.

5 0
3 years ago
An isolated charged point particle produces an electric field with magnitude E at a point 2 m away. At a point 1 m from the part
guajiro [1.7K]

Explanation:

The electric field at a distance r from the charged particle is given by :

E=\dfrac{kq}{r^2}

k is electrostatic constant

if r = 2 m, electric field is given by :

E_1=\dfrac{kq}{(2)^2}\\\\=\dfrac{kq}{4}\ .....(1)

If r = 1 m, electric field is given by :

E_2=\dfrac{kq}{r_2^2}\\\\=\dfrac{kq}{1}\ ....(2)

Dividing equation (1) and (2) we get :

\dfrac{E_1}{E_2}=\dfrac{\dfrac{kq}{4}}{kq}\\\\\dfrac{E_1}{E_2}=\dfrac{1}{4}\\\\E_2=4\times E_1

So, at a point 1 m from the particle, the electric field is 4 times of the electric field at a point 2 m.

4 0
3 years ago
Other questions:
  • Which part of the steam engine does the work?
    6·2 answers
  • Janet jumps off a high diving platform with a horizontal velocity of 2.8 meters per second in lands in the_________.
    15·1 answer
  • Predict which current will be greater, the current passing through an electric razor or electric iron.?
    14·2 answers
  • Can someone plz tell me how to solve this step by step
    7·1 answer
  • A person wears a hearing aid that uniformly increases the sound level of all audible frequencies of sound by 28.1 dB. The hearin
    8·1 answer
  • Joan makes the device shown in her science class. What would happen to the magnetic field if she connects the battery in the opp
    15·2 answers
  • A 1000kg car uses a breaking force of 10,000N to stop in two second. What impulse acts on the car?
    14·1 answer
  • What are the laws of motion​
    12·2 answers
  • An arrow is shot parallel to horizontal from a height of 1.4 meters. It has a velocity of 49 m/s.
    7·1 answer
  • A child pulls a toy wagon with a force of 25.0 N for a distance of 8.5M. How much work did the child do on the wagon?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!