Answer:
K = 80.75 MeV
Explanation:
To calculate the kinetic energy of the antiproton we need to use conservation of energy:

<em>where
: is the photon energy,
: are the rest energies of the proton and the antiproton, respectively, equals to m₀c²,
: are the kinetic energies of the proton and the antiproton, respectively, c: speed of light, and m₀: rest mass.</em>
Therefore the kinetic energy of the antiproton is:
<u>The proton mass is equal to the antiproton mass, so</u>:

Hence, the kinetic energy of the antiproton is 80.75 MeV.
I hope it helps you!
Answer:
Here ball and rod will repel each other as they are of similar charges
Explanation:
As we know that the two charges attract or repel each other by electrostatic force
This force is given as

so we know if two charges are similar in nature then they will repel each other and if the two charges are opposite in nature then they will attract each other
So here when rod touch the ball then it transfer its charge to the ball and due to similar charges in ball and rod they both repel each other
m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J
The last one is correct (D)
Answer:
a = 3.27 m/s²
v = 2.56 m/s
Explanation:
given,
mass A = 1 kg
mass B = 2 kg
vertical distance between them = 1 m










a = 3.27 m/s²
The speed of the system at that moment is:
v² = u² + 2×a×s
v² = 0² + 2× 3.27 × 1
v ² = 6.54
v = 2.56 m/s