Answer:
v = -14 m/s
Explanation:
Given that,
Initial location of the ball, X₁ = 10 m
Final position of the ball, X₂ = -25 m
Time taken to travel is, t = 2.5 s
The average velocity of the ball is given by the formula,
V = X₂ - X₁ / t m/s
Substituting the values in the above equation,
V = -25 - 10 / 2.5
= -14 m/s
The negative sign in the velocity indicates that ball rolls in the opposite direction.
Hence, the average velocity of the ball is v = -14 m/s
Answer:
ELASTIC collision
kinetic energy is conservate
Explanation:
As the ball bounces to the same height, it can be stated that the impact with the floor is ELASTIC.
As the floor does not move the conservation of the moment
po = pf
-mv1 = m v2
- v1 = v2
So the speed with which it descends is equal to the speed with which it rises
Therefore the kinetic energy of the ball before and after the collision is the same
Answer:
k is the energy of motion it increase with four of load you carry
Answer:
-26 m/s.
Explanation:
Hello,
In this case, since the vertical initial velocity is 26 m/s and the vertical final velocity is 0 m/s at P, we compute the time to reach P:

With which we compute the maximum height:

Therefore, the final velocity until the floor, assuming P as the starting point (Voy=0m/s), turns out:

Which is clearly negative since it the projectile is moving downwards the starting point.
Regards.
Use Force=Mass x Acceleration (newtons second law states force is directly proportional to the acceleration) so you can say that the force is negative and solve for Acceleration.