1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisabon 2012 [21]
2 years ago
13

What are the characteristics of a " team " in hit in volleyball ? ​

Physics
1 answer:
Lostsunrise [7]2 years ago
5 0

Answer:

<em>A team may contact the ball a total of </em><em>three (3) times</em><em> before it is sent over the net. </em>

<em />

You might be interested in
Suppose a small planet is discovered that is 16 times as far from the Sun as the Earth's distance is from the Sun. Use Kepler's
mamaluj [8]

Answer:

23376 days

Explanation:

The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

T^2\alpha R^3\\T^2=kR^3.......................(1)

where k is a constant.

From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

\frac{T^2}{R^3}=k.......................(2)

Let the orbital period of the earth be T_e and its mean distance of from the sun be R_e.

Also let the orbital period of the planet be T_p and its mean distance from the sun be R_p.

Equation (2) therefore implies the following;

\frac{T_e^2}{R_e^3}=\frac{T_p^2}{R_p^3}....................(3)

We make the period of the planet T_p the subject of formula as follows;

T_p^2=\frac{T_e^2R_p^3}{R_e^3}\\T_p=\sqrt{\frac{T_e^2R_p^3}{R_e^3}\\}................(4)

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

R_p=16R_e...............(5)

Substituting equation (5) into (4), we obtain the following;

T_p=\sqrt{\frac{T_e^2(16R_e)^3}{(R_e^3}\\}\\T_p=\sqrt{\frac{T_e^24096R_e^3}{R_e^3}\\}

R_e^3 cancels out and we are left with the following;

T_p=\sqrt{4096T_e^2}\\T_p=64T_e..............(6)

Recall that the orbital period of the earth is about 365.25 days, hence;

T_p=64*365.25\\T_p=23376days

4 0
3 years ago
How much work does the electric field do in moving a proton from a point with a potential of +125 v to a point where it is -55 v
777dan777 [17]
The work W done by the electric field in moving the proton is equal to the difference in electric potential energy of the proton between its initial location and its final location, therefore:
W= qV_i - qV_f
where q is the charge of the proton, q=1 e = 1.6\cdot 10^{-19}C, with e being the elementary charge, and V_i = +125 V and V_f = -55 V are the initial and final voltage.

Substituting, we get (in electronvolts):
W=e(125 V-(-55 V))=180 eV
and in Joule:
W=(1.6 \cdot 10^{-19})(125 V-(-55V))=2.88 \cdot 10^{-17}J

5 0
3 years ago
Name two technologies that people in developing nations could benefit from.
Verizon [17]
Water filters and internet to get more knowledge
8 0
3 years ago
10. Inertia causes your books on the car seat to continue moving forward even after you brake. TrueFalse 11. Tires with little o
Charra [1.4K]

10. True

11. True

12. True

13. False

14. False

Hope this helps!!

3 0
3 years ago
Figure 10.20 in your textbook shows an energy diagram for a system with total energy E1. Suppose the system's total energy is E2
wolverine [178]

The particles can undergo small oscillations around x₂.

The given parameters;

  • <em>initial energy of the particles = E₁</em>
  • <em>final energy of the particles, E₂ = 0.33E₁</em>

The movement of the particles depends on the kinetic energy of the particles.

When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.

However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.

  • The maximum position the particle can oscillate is x₅
  • The half position the particles can oscillate is x₃

Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.

Thus, we can conclude that the particles can undergo small oscillations around x₂.

Learn more here:brainly.com/question/23910777

3 0
2 years ago
Other questions:
  • A ball is launched with an initial velocity of 3m/s, at an angle of 40 degrees above the horizontal, and from a height of 0.5m.
    7·1 answer
  • How long will the energy in a 1470-kJ (350-kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficienc
    12·1 answer
  • A 2.43ug particle moves at 1.97 x 108 m/s. What is its momentum?
    5·1 answer
  • When driving at slower speeds you need to use what type of steering
    6·1 answer
  • 2. How much work does gravity do in causing a 6 kg hammer to fall to the ground from a
    9·1 answer
  • When a high voltage is applied to a low-pressure gas causing it to glow, it will generate which type of spectrum
    15·1 answer
  • A force of 10N is making an angle of 300 with the horizontal. Its horizontal components will be
    15·1 answer
  • A hiker walks 200 m west and then walks 100 m north. In what direction is her resulting displacement?a. northb. westc. northwest
    6·1 answer
  • Doing science by inquiry always involves:​
    15·1 answer
  • The figure below shows a motorcycle leaving the end of a ramp with a speed of 39.0 m/s and following the curved path shown. At t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!