Answer:
B. The current increases.
Explanation:
As we know that rate of flow of charge through the conductor is known as electric current
So we have
![i = \frac{q}{t}](https://tex.z-dn.net/?f=i%20%3D%20%5Cfrac%7Bq%7D%7Bt%7D)
here we know that charge Q flowing through the conductor is constant while the time in which it passes through it is decreased
so we can say that the ratio of charge and time will increase
so here we have
![i = increased](https://tex.z-dn.net/?f=i%20%3D%20increased)
So correct answer will be
B. The current increases.
Answer
given,
diameter,d₁ = 7.5 cm
d₂ = 4.5 cm
P₁ = 32 kPa
P₂ = 25 kPa
Assuming, we have calculation of flow in the pipe
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₂² v₂
Applying Bernoulli's equation
v₂ = 4.01 m/s
fluid flow rate
Q = A₂ V₂
Q = π (0.0225)² x 4.01
Q = 6.38 x 10⁻³ m³/s
flow in the pipe is equal to 6.38 x 10⁻³ m³/s
You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!
Answer: Primary coil
A Step-down transformer is an electrical device which is used to decrease the voltage using magnetic induction. The windings of the primary coil are more than the windings of the secondary coils. h1, h2 notations are used to refer to primary coils. On the other hand, x1, x2 notations are used to refer to the secondary coils of the transformer. In case of step-up transformer, the windings of primary coil are less than the secondary in order to increase the voltage.