Answer:
The final acceleration of the car, v = 70 m/s
Explanation:
Given,
The initial velocity of the car, u = 20 m/s
The acceleration of the car, a = 10 m/s²
The time period of travel, t = 5 s
Using the I equations of motion
v = u + at
= 20 + 10(5)
= 20 + 50
= 70 m/s
Hence, the final acceleration of the car, v = 70 m/s
The acceleration of the particle at time t is:
The velocity of the particle at time t is given by the integral of the acceleration a(t):
and the position of the particle at time t is given by the integral of the velocity v(t):
Assuming the particle starts from position x(0)=0 at t=0, the distance the particle covers in the first t=2 seconds can be found by substituting t=2 s in the equation of x(t):
Answer:
22.505 seconds
Explanation:
V =19.8m/s
V = a*to
t1 = 19.8/3.3
= 6seconds
Distance travelled during acceleration
= 1/2 x 3.3 x 6²
= 59.4m
X_total = x1 + x2
X2 = 373-59.4
X2 = 313.6m
t2 = x2/v
= 313.6/19.8
= 16.505
Total = 16.505 + 6
= 22.505 seconds
the minimum time in which an elevator can travel the 373 m from the ground floor is 22.505 seconds.
It is wavelength i think so!!!!