Question is missing. Found on google:
<em>"Part A What is the acceleration of the ball? Express your answer to two significant figures and include the appropriate units. </em>
<em>Part B
</em>
<em>What is the net force on the ball during the hit? </em>
<em>Express your answer to two significant figures and include the appropriate units."</em>
Solution:
A) 
The acceleration of the ball is given by

where
v = 12 m/s is the final velocity
u = 0 is the initial velocity (the ball is stationary)
t = 2.0 ms = 0.002 s is the time of contact
Substituting,

B) 
The force on the ball can be found by using Newton's second law:

where
m = 140 g = 0.14 kg is the mass of the ball
is the acceleration
Substituting,

Answer:D
Explanation:
When the character falls off from cliff he moves away from the observer as he falls down and hence the frequency heard by observer lowers as he falls.
Therefore the pitch of the sound is lower than the original sound and decreasing as he falls
Option D is the correct choice
<h2>Amoeba / Unicellular</h2><h2>Segmented worm / Earthworm</h2><h2>Unsegment worm / Tapeworm</h2><h2>Snail / Molluscs</h2><h2>Butterfly / A pair of antenna</h2><h2 /><h3><em>Unicellular: </em><u><em>aboema</em></u><em>: a </em><u><em>one-celled</em></u><em>, microscopic organism belonging to any of several families of rhizopods that move and feed using pseudopodia and reproduce by fission</em></h3><h3><em /></h3><h3><em>Segmented worms: segmented worms include the common </em><u><em>earthworm</em></u><em> and leeches.</em></h3><h3><em /></h3><h3><u><em>Unsegented worms:</em></u><em> unsegmented Worms Phylum Platyhelminthes & Nematoda. Worms. Worms are divided into three different phyla: Phylum Platyhelminthes, the flatworms. These include marine flatworms, flukes, and </em><u><em>tapeworms</em></u><em>.</em></h3><h3><em /></h3><h3><u><em>Molluscs</em></u><em>: molluscs examples: – </em><u><em>snails</em></u><em>, slugs, limpets, whelks, conchs, periwinkles, etc. Class Bivalvia – clams, oysters, mussels, scallops, cockles, shipworms, etc. The Class Scaphopoda contains about 400 species of molluscs called tooth or tusk shells, all of which are marine.</em></h3><h3><em /></h3><h3><u><em>Antennas</em></u><em>: </em><u><em>Nearly all insects have a pair of antennae</em></u><em> on their heads. They use their antennae to touch and smell the world around them. ... Insects are the only arthropods that have wings, and the wings are always attached to the thorax, like the legs.</em></h3>
Refer to the figure shown below.
g = 9.8 m/s², the acceleration due to gravity.
W = mg, the weight of the mug.
θ = 17°, the angle of the ramp.
Let μ = the coefficient of static friction.
The force acting down the ramp is
F = W sin θ = W sin(17°) = 0.2924W N
The normal reaction is
N = W cosθ = W cos(17°) = 0.9563W N
The resistive force due to friction is
R = μN = 0.9563μW N
For static equilibrium,
μN = F
0.9563μW =0.2924W
μ = 0.3058
The frictional force is F = μN = 0.2924W
The minimum value of μ required to prevent the mug from sliding satisfies
the condition
R > F
0.9563μW > 0.2924W
μ > 002924/.9563 = 0.306
Answer:
The frictional force is 0.2924mg, where m = the mass of the mug.
The minimum coefficient of static friction is 0.306
Answer:
Yes.
Explanation:
A negative power would just represent a loss of power. So in your case it lost -1252.16 W