Answer:
a weak bond between two molecules resulting from an electrostatic attraction between a proton in one molecule and an electronegative atom in the other.
Explanation:
For example, in water molecules (H2O), hydrogen is covalently bonded to the more electronegative oxygen atom. Therefore, hydrogen bonding arises in water molecules due to the dipole-dipole interactions between the hydrogen atom of one water molecule and the oxygen atom of another H2O molecule.
Salutations!
What causes a substance to change states of matter?
Energy causes a substance to change states of matter. A matter needs energy to melt, evaporate, boil. Remember: Energy has a sudden change, but the temperature remains absolutely the same. An example of a change in energy is when ice is melting.
Hope I helped (:
Have a great day!
C is the answer.
The temperature T<span> in degrees Celsius (°C) is equal to the temperature </span>T<span> in Kelvin (K) minus 273</span>°.
Answer:
CH3COOH would be more concentrated
Explanation:
The higher the concentration value, the more concentrated it is.
The relationship between concentration, moles and volume is given by the equation;
Concentration = No of moles / Volume
5.0 grams of HCOOH dissolved in 189 mL of water
Number of moles = Mass / Molar mass = 5 / 46.03 = 0.1086 mol
Concentration = 0.1086 / 0.189 = 0.5746 mol/L
1.5 moles of CH3COOH dissolved in twice as much water
Volume = 2 * 189 = 378 ml = 0.378 L
Concentration = 1.5 / 0.378 = 3.9683 mol/L
Comparing both concentration values;
CH3COOH would be more concentrated
Answer:- 3.
and 
Explanations:- An empirical formula is the simplest whole number ratio of atoms of each element present in the molecule/compound.
For example, the molecular formula of benzene is
. The ratio of C to H in it is 6:6 that could be simplified to 1:1. So, an empirical formula of benzene is CH.
In the first pair, the ratio of C to H in first molecule is 2:4 that could be simplified to 1:2 and the empirical formula is
. In second molecule the ratio of C to H is 6:6 and it could be simplified to 1:1. and the empirical formula is CH. Empirical formulas are different for both the molecules of first pair and so it is not the right choice.
In second pair, C to H ratio in first molecule is 1:2, so the empirical formula is
. The C to H ratio for second molecule is 1:4, so the empirical formula is
. Here also, the empirical formulas are not same and hence it is also not the right choice.
In third pair, C to H ratio in first molecule is 1:3, so the empirical formula is
. In second molecule the C to H ratio is 2:6 and it is simplified to 1:3. So, the empirical formula for this one is also
. Hence. this is the correct choice.
In fourth pair, first molecule empirical formula is CH. Second molecule has 2:4 that is 1:2 mole ratio of C to H and so its empirical formula is
. As the empirical formulas are different, it is not the right choice.
So, the only and only correct pair is the third one. 3.
and 