Answer:
The law of constant proportions states that chemical compounds are made up of elements that are present in a fixed ratio by mass. This implies that any pure sample of a compound, no matter the source, will always consist of the same elements that are present in the same ratio by mass.
Answer:
1.76 g/mL
Explanation:
You need to find the volume. You can do this by subtracting the volume of the water and the rock by the volume of the water.
72.7 mL - 50 mL = 22.7 mL
Now that you have volume, divide the mass by the volume to find the density.
39.943 g/22.7 mL = 1.76 g/mL
Answer:
Mass of aluminium in sample = 3.591 g ≅ 3.6 grams
Explanation:
Given that, A sample of aluminum absorbs 50.1 J of heat, upon which the temperature of the sample increases from 20.0°C to 35.5°C.
the specific heat of aluminum is 0.900 J/g- °C
The relation between heat absorbed and change in temperature is given by, Q = msΔT.
where Q = heat absorbed
m = mass of the substance
s = specific heat of substance
ΔT = change in temperature
Now, in our case, Q = 50.1 J ; s = 0.900 J/g- °C; ΔT= 35.5-20 = 15.5°C
⇒ m = 
⇒ m =
= 3.591 g ≅ 3.6 g
⇒ m ≅ 3.6 g
Answer : The work done on the surroundings is, 709.1 Joules.
Explanation :
The formula used for isothermally irreversible expansion is :

where,
w = work done
= external pressure = 1.00 atm
= initial volume of gas = 1.00 L
= final volume of gas = 8.00 L
Now put all the given values in the above formula, we get :



The work done by the system on the surroundings are, 709.1 Joules. In this, the negative sign indicates the work is done by the system on the surroundings.
Therefore, the work done on the surroundings is, 709.1 Joules.
Two objects having the same internal energy may have different temperatures if their masses and specific heats are different and it's possible that an object with more eternal energy may be at a lower temperature than the one with less internal energy.