By tightening a string you are actually putting more stress on the string you are giving it a new frequency that isn't natural.
Hope this helps
<span />
Answer:
Aluminium
Explanation:
When a body is immersed in a liquid partly or wholly it experiences an upward force which is called buoyant force.
The amount of buoyant force depends on the volume of body immersed, density of liquid and the value of acceleration due to gravity.
Here, the density of liquid is same in both the cases and g be the same. So, here the amount of buoyant force depends on the volume of body immersed.
As the density of lead is more than the density of aluminium, so the volume of aluminium is more than lead, as volume is equal to mass divided by density. So, the buoyant force acting on the aluminium is more than lead.
Answer:
No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.
Explanation:
Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart such that, in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Similarly, energy is needed to vaporize a liquid, because molecules in a liquid interact with each other via attractive forces. There is no temperature change until a phase change is complete. The temperature of a cup of soda initially at 0ºC stays at 0ºC until all the ice has melted. Conversely, energy is released during freezing and condensation, usually in the form of thermal energy. Work is done by cohesive forces when molecules are brought together. The corresponding energy must be given off (dissipated) to allow them to stay together Figure 2.
The energy involved in a phase change depends on two major factors: the number and strength of bonds or force pairs. The number of bonds is proportional to the number of molecules and thus to the mass of the sample. The strength of forces depends on the type of molecules. The heat Q required to change the phase of a sample of mass m is given by
Q = mLf (melting/freezing,
Q = mLv (vaporization/condensation),
where the latent heat of fusion, Lf, and latent heat of vaporization, Lv, are material constants that are determined experimentally.
The rate of heat loss by radiation is equal to <u>-207.5kW</u>
Why?
To calculate the heat loss rate (or heat transfer rate) by radiation, from the given situation, we can use the following formula:

Where,
E, is the emissivity of the body.
A, is the area of the body.
T, are the temperatures.
S, is the Stefan-Boltzmann constant, which is equal to:

Now, before substitute the given information, we must remember that the given formula works with absolute temperatures (Kelvin), so, we need to convert the given values of temperature from Celsius degrees to Kelvin.
We know that:

So, converting we have:

Therefore, substituting the given information and calculating, we have:


Hence, we have that the rate of heat loss is equal to -207.5kW.
Answer:
The height of Sears Tower is 1448.5 feet.
Explanation:
<h3>
We apply the free fall formula to the ball:
</h3><h3>

</h3><h3>y: The vertical distance the ball moves at time t </h3><h3>

i: Initial speed
</h3><h3>g=Gravity acceleration=

</h3>
Known information
We know that the vertical distance (y) that the ball moves in 9,5s is equal to height of Sears Tower (h).
Too we know that the ball is released from rest, then,
=0
Height of Sears Tower calculation:
We replace in the equation 1 the data following;






Answer: The height of Sears Tower is 1448.5 ft