A/c/d. that is the anser hope it helps
Answer:
(i) -556 rad/s²
(ii) 17900 revolutions
(iii) 11250 meters
(iv) -55.6 m/s²
(v) 18 seconds
Explanation:
(i) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
α = (10000 − 15000) / 9
α ≈ -556 rad/s²
(ii) Constant acceleration equation:
θ = θ₀ + ω₀ t + ½ αt²
θ = 0 + (15000) (9) + ½ (-556) (9)²
θ = 112500 radians
θ ≈ 17900 revolutions
(iii) Linear displacement equals radius times angular displacement:
s = rθ
s = (0.100 m) (112500 radians)
s = 11250 meters
(iv) Linear acceleration equals radius times angular acceleration:
a = rα
a = (0.100 m) (-556 rad/s²)
a = -55.6 m/s²
(v) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
-556 = (0 − 15000) / t
t = 27
t − 9 = 18 seconds
Answer:
A.
Explanation:
because the carbonic acid reacts to the limestone.
Answer:
18 Ω
Explanation:
As K and F are at the same voltage, we can redraw the diagram as in figure 2
Series resistances add directly, so we get figure 3
Adding parallel resistances gets us to figure 4
Now we can move two 6Ω resistances for clarification in figure 5
As the voltage between C and J will be identically split between D and H, there will be no voltage drop across the middle 6Ω resister and no current through it, identical to an infinite resistance, so that 6Ω can be eliminated as in figure 6
Add series resistances to get to figure 7
Add parallel resistances to get to figure 8
Add series resistances to get to figure 9
Answer: a) The rate constant, k, for this reaction is
b) No
does not depend on concentration.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

Given: Order with respect to
= 1
Thus rate law is:
a) ![Rate=k[A]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1)
k= rate constant
![0.00250=k[0.484]^1](https://tex.z-dn.net/?f=0.00250%3Dk%5B0.484%5D%5E1)

The rate constant, k, for this reaction is
b) Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
Half life is the amount of time taken by a radioactive material to decay to half of its original value.


Thus
does not depend on concentration.