Given:
The force of attraction is F = 48.1 N
The separation between the charges is

Also, the magnitude of charge q1 = q2 = q.
To find the magnitude of charge.
Explanation:
The magnitude of charge can be calculated by the formula

Here, k is the Coulomb's constant whose value is

On substituting the values, the magnitude of charge will be

Thus, the magnitude of each charge is 9.91 x 10^(-4) micro Coulombs.
Answer:
374 N
Explanation:
N = normal force acting on the skier
m = mass of the skier = 82.5
From the force diagram, force equation perpendicular to the slope is given as
N = mg Cos18.7
μ = Coefficient of friction = 0.150
frictional force is given as
f = μN
f = μmg Cos18.7
F = force applied by the rope
Force equation parallel to the slope is given as
F - f - mg Sin18.7 = 0
F - μmg Cos18.7 - mg Sin18.7 = 0
F = μmg Cos18.7 + mg Sin18.7
F = (0.150 x 82.5 x 9.8) Cos18.7 + (82.5 x 9.8) Sin18.7
F = 374 N
Answer:
the force will decrease to 3/4 of its original value.
Explanation:
The initial electric force between the two charges is:

where
k is the Coulomb's constant
q is the magnitude of each charge
r is their separation
Later, half of one charge is transferred to the other charge; this means that one charge will have a charge of

while the other charge will be

So, the new force will be

So, the force will decrease to 3/4 of its original value.
Answer:
Charge on each is 2 x 10⁻¹⁰.
Explanation:
We know that Force between two point charges is given b the Coulomb's law as:
F = kq₁q₂/r^2
k = 9 x 10^9
r = 3.00 cm
= 0.03 m
q₁ = q₂
F = 4.00 x 10^-7
Rearranging the formula, we get:
F = k q²/r²
q² = Fr²/k
q² = 4 x 10⁻⁷ x 0.03²/(9x10⁹)
q² = 4 x 10⁻²⁰
q = 2 x 10⁻¹⁰
As there is force of repulsion between the charges, the charges must be both positive or both negative.