1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firdavs [7]
2 years ago
10

a balloon of total mass 2200 kg hovers stationary at a height of several meters above the ground. a mass of 200 kg is released f

rom rest from the balloon.calculate the acceleration of the balloon as it starts to rise.
Physics
1 answer:
sleet_krkn [62]2 years ago
4 0

Answer:

1 m/s²

Explanation:

added in the picture

You might be interested in
. An object whose mass is 375 lb falls freely under the influence of gravity from an initial elevation of 253 ft above the surfa
lozanna [386]

Answer:

(a) Vf = 128 ft/s

(b) K.E = 122.8 Btu

Explanation:

(a)

In order to find the velocity of the object just before striking the surface of earth or the final velocity, we use 3rd equation of motion:

2gh = Vf² - Vi²

where,

g = 32.2 ft/s²

h = height = 253 ft

Vf = Final Velocity = ?

Vi = Initial Velocity = 10 ft/s

Therefore,

(2)(32.2 ft/s²)(253 ft) = Vf² - (10 ft/s)²

16293.2 ft²/s² + 100 ft²/s² = Vf²

Vf = √(16393.2 ft²/s²)

<u>Vf = 128 ft/s</u>

<u></u>

(b)

The kinetic energy of the object before it hits the surface of earth is given by:

K.E = (0.5)(m)(Vf)²

where,

m = mass of object = 375 lb

K.E = Kinetic energy of object before it strikes the surface of earth = ?

Therefore,

K.E = (0.5)(375 lb)(128 ft/s)²

K.E = 3073725 lb.ft²/s²

Now, converting this to Btu:

K.E = (3073725 lb.ft²/s²)(1 Btu/25037 lb.ft²/s²)

<u>K.E = 122.8 Btu</u>

3 0
3 years ago
A typical running track is an oval with 74-mm-diameter half circles at each end. A runner going once around the track covers a d
lisabon 2012 [21]

The centripetal acceleration a is 4.32 \times 10^-4 m/s^2.

<u>Explanation:</u>

The speed is constant and computing the speed from the distance and time for one full lap.

Given, distance = 400 mm = 0.4 m,       Time = 100 s.

Computing the v = 0.4 m / 100 s

                         v = 4 \times 10^-3 m/s.

radius of the circular end r = 37 mm = 0.037 m.

            centripetal acceleration a = v^2 / r

                                                        = (4 \times 10^-3)^2 / 0.037

                                                    a = 4.32 \times 10^-4 m/s^2.

6 0
3 years ago
A sound source is moving at 80 m/s toward a stationary listener that is standing in still air (a) Find the wavelength of the sou
Setler [38]

Answer:

a. wavelength of the sound, \vartheta = 1.315\vartheta_{o}

b. observed frequecy, \lambda = 0.7604\lambda_{o}

Given:

speed of sound source, v_{s} = 80 m/s

speed of sound in air or vacuum, v_{a} = 343 m/s

speed of sound observed, v_{o} = 0 m/s

Solution:

From the relation:

v = \vartheta \lambda        (1)

where

v = velocity of sound

\vartheta = observed frequency of sound

\lambda = wavelength

(a) The wavelength of the sound between source and the listener is given by:

\lambda = \frac{v_{a}}{\vartheta }         (2)

(b) The observed frequency is given by:

\vartheta = \frac{v_{a}}{v_{a} - v_{s}}\vartheta_{o}

\vartheta = \frac{334}{334 - 80}\vartheta_{o}

\vartheta = 1.315\vartheta_{o}                (3)

Using eqn (2) and (3):

\lambda = \frac{334}{1.315} = \frac{1}{1.315}\frac{v_{a}}{\vartheta_{o}}

\lambda = 0.7604\lambda_{o}

4 0
3 years ago
An astronaut on a space walk floats a little too far away from the space station. Without air to push against, he cannot paddle
Artyom0805 [142]
He can throw the hammer in the direction opposite to the direction he wants to travel in. The hammer will exert an equal and opposite force on him, as per Newton's third law, and this will help him move towards the space station.
5 0
3 years ago
Read 2 more answers
A red shirt appears red because?
pickupchik [31]

Red shirt appears red because:

a. The shirt reflects red light

3 0
2 years ago
Other questions:
  • Which of the following is the most effective relaxation technique?
    11·2 answers
  • The power lines are at a high potential relative to the ground, so there is an electric field between the power lines and the gr
    9·1 answer
  • Which statements apply to transverse waves? Check all that apply.
    11·2 answers
  • Two particles are at the same point at the same time, moving in the same direction. Particle A has an initial velocity of 7.6 m/
    7·1 answer
  • by scale drawing, find the resultant of vectors 70N inclined at100N and direction of the resultant 100N​
    6·1 answer
  • Barbara places an object in front of a mirror. The mirror produces an image that is inverted, real, and smaller than the object.
    12·1 answer
  • A car mass 600kg starts from rest moving uniform acceleration 0.2 m/s^2 after 60 seconds collides with stationary pick up van of
    10·1 answer
  • Why would a ball in outer space move at a constant speed in the same direction?<br> HELp HURRY
    6·1 answer
  • What is the force of a punch if it accelerates at 0.2m/s2 and has a mass of 2kg?​
    6·1 answer
  • A 200-turn solenoid having a length of 25 cm and a diameter of 10 cm carries a current of 0.29 A. Calculate the magnitude of the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!