1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
2 years ago
7

What evidence did astronomers use to prove jets travel in opposite directions?

Physics
2 answers:
mr Goodwill [35]2 years ago
7 0

The evidence that astronomers use to prove jets travel in opposite direction is Spectral lines from a very fast moving ionized gases.

<h3>Who are the astronomers?</h3>

Astronomer is a person who study astronomy which is a scientific study that has to do with space, space bodies, comets, planets, stars and so on.

Therefore, The evidence that astronomers use to prove jets travel in opposite direction is Spectral lines from a very fast moving ionized gases.

Learn more about astronomers below.

brainly.com/question/10826203

#SPJ11

klio [65]2 years ago
7 0
Spectral lines from fast-moving red- and blue-shifted ionized gas
You might be interested in
Which type of energy is stored in a battery?
OleMash [197]

Answer:

c

Explanation:

in food and batteries chemical energy is stored :) hope this helped

5 0
3 years ago
Read 2 more answers
A beam of light has a wavelength of 650 nm in vacuum. (a) What is the speed of this light in a liquid whose index of refraction
Lady_Fox [76]

Answer:

The speed of this light and wavelength in a liquid are 2.04\times10^{8}\ m/s and 442 nm.

Explanation:

Given that,

Wavelength = 650 nm

Index refraction = 1.47

(a). We need to calculate the speed

Using formula of speed

n = \dfrac{c}{v}

Where, n = refraction index

c = speed of light in vacuum

v = speed of light in medium

Put the value into the formula

1.47=\dfrac{3\times10^{8}}{v}

v=\dfrac{3\times10^{8}}{1.47}

v= 2.04\times10^{8}\ m/s

(b). We need to calculate the wavelength

Using formula of wavelength

n=\dfrac{\lambda_{0}}{\lambda}

\lambda=\dfrac{\lambda_{0}}{n}

Where, \lambda_{0} = wavelength in vacuum

\lambda = wavelength in medium

Put the value into the formula

\lambda=\dfrac{650\times10^{-9}}{1.47}

\lambda=442\times10^{-9}\ m

Hence, The speed of this light and wavelength in a liquid are 2.04\times10^{8}\ m/s and 442 nm.

3 0
3 years ago
Suppose you are on a cart, initially at rest, which rides on a frictionless horizontal track. You throw a ball at a vertical sur
Len [333]

Answer:

F_c t_ c = -F_b t_b

And the forces are equal but in the opposite direction. So then we can write by general rule:

m_c \Delta V_{c} = -m_b \Delta V_b

Or equivalently:

m_c \Delta V_{c} +m_b \Delta V_b =0

Where: V_c represent the speed of the car and V_b the speed of the ball

m_c represent the mass of the car

m_b represent the mass of the ball

Since the ball is moving to the left and we assume that the total momentum not changes then the car need to move to the right in order to satisfy the equation and satisfy the balance.

By conservation of the momentum the car will move to the right since the ball is moves to the left.

So then the correct option for this case is :

A.Yes, and it moves to the right.

Explanation:

If we assume that we have the situation in the figure attached.

For this case we assume that the momentum changes are equal in magnitude and opposite in direction, so then we satisfy this:

F_c t_ c = -F_b t_b

And the forces are equal but in the opposite direction. So then we can write by general rule:

m_c \Delta V_{c} = -m_b \Delta V_b

Or equivalently:

m_c \Delta V_{c} +m_b \Delta V_b =0

Where: V_c represent the speed of the car and V_b the speed of the ball

m_c represent the mass of the car

m_b represent the mass of the ball

Since the ball is moving to the left and we assume that the total momentum not changes then the car need to move to the right in order to satisfy the equation and satisfy the balance.

By conservation of the momentum the car will move to the right since the ball is moves to the left.

So then the correct option for this case is :

A.Yes, and it moves to the right.

3 0
3 years ago
Andre heated several solid crystals of a substance called iodine, and the iodine changed directly to a gas. The iodine gas then
Strike441 [17]

The correct choice is

B. sublimation, then condensation

Sublimation is the name of the process where a solid directly converts into gas on heating. on heating solid crystals of iodine directly change into gas. hence this is sublimation.

condensation is the process where gas is converted into liquid on cooling.

here iodine gas is being converted into droplets on reducing the temperature. hence this is condensation.


8 0
3 years ago
Read 2 more answers
Suppose an astronaut has landed on Planet * Fully equipped, the astronaut has a
gayaneshka [121]

From the calculations, the value of the acceleration due to gravity is 0.38 m/s^2.

<h3>What is weight?</h3>

The weight of an object is obtained as the product of the mass of the body and the acceleration due to gravity.

Thus;

When;

mass = 120 kg

weight =  46 N

acceleration due to gravity = 46 N/120 kg

=0.38 m/s^2

Learn more about acceleration due to gravity :brainly.com/question/13860566

#SPJ1

7 0
2 years ago
Other questions:
  • The distance between the first and fifth minima of a single-slit diffraction pattern is 0.350 mm with the screen 39.0 cm away fr
    12·1 answer
  • If you use such a tank to fill 0.020 m3 foil balloons (which don't stretch, and so have an internal pressure that is very close
    7·1 answer
  • An object with a mass of 20 kg has a net force of 80 N acting on it. What is the acceleration of the object
    12·1 answer
  • A roller coaster uses the track in this picture. Where will the roller coaster car have the most potential energy?
    11·1 answer
  • A 62 kg skydiver moving at terminal speed falls 50 m in 1 s. What power is the skydiver expending on the air?
    12·1 answer
  • 8. Cart 1 with mass of 2kg moving at +6m/s collides with cart 2 with a mass of 1kg,
    12·2 answers
  • a car accelerates from 2 m/s to 28m/s at a constant rate of 3 m/s^2. How far does it travel while accelerating?
    13·1 answer
  • Which situation would create a field like the one shown here?
    8·1 answer
  • What is science notation
    7·2 answers
  • Using the graph above determine the acceleration for the object represented between 6.0s and 8.0s
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!