Answer:
Velocity (v) is a vector quantity that measures displacement (or change in position, Δs) over the change in time (Δt), represented by the equation v = Δs/Δt. Speed (or rate, r) is a scalar quantity that measures the distance traveled (d) over the change in time (Δt), represented by the equation r = d/Δt.
Explanation:
efficiency=work output/work input×100
since it exhausts(use up)3000j of heat that's the work input and the 1500j is the work input
efficiency=1500/3000×100
=50%
Answer:
I would increase the horizontal velocity or the vertical velocity or both to make the ball go the extra distance to cross the goal line.
Explanation:
In order to increase the horizontal distance covered by the ball, we need to examine the variables involved in the formula of range of projectile. The formula for the range of projectile is given as follows:
R = V₀² Sin 2θ/g
where, g is a constant on earth (acceleration due to gravity) and θ is the angle of ball with ground at the time of launching. The value of θ should be 45° for maximum range. In this case we do not know the angle so, we can not tell if we should change it or not.
The only parameter here which we can increase to increase the range is launch velocity (V₀). The formula for V₀ in terms of horizontal and vertical components is as follows:
V₀ = √(V₀ₓ² + V₀y²)
where,
V₀ₓ = Horizontal Velocity
V₀y = Vertical Velocity
Hence, it is clear from the formula that we can increase both the horizontal and vertical velocity to increase the initial speed which in turn increases the horizontal distance covered by the ball.
<u>Therefore, I would increase the horizontal velocity or the vertical velocity or both to make the ball go the extra distance to cross the goal line.</u>
Is that on the question or ?