Adding hot cocoa to hot water would be a chemical change
A pure substance is a substance which cannot be separated physically or chemically. It is the same wherever found on earth. For example, pure gold is a pure substance. It will be the same whether it is found where you live or on another country. A mixture can be either homogeneous or heterogeneous. A homogeneous mixture is a mixture that looks the same throughout but is made of more than one element. An example of this would be salt and water mixture. A heterogeneous mixture is a mixture in which you can easily identify the different parts which make it up. An example of this would be pizza. Both these mixtures can be broken into different parts either physically or chemically.
Hope it helps :)
Answer:
Definition and Mathematics of Work
Calculating the Amount of Work Done by Forces
Potential Energy
Kinetic Energy
Mechanical Energy
Explanation:
Sublimation is defined as a process in which solid state of a substance directly changes into vapor or gaseous state without undergoing liquid phase.
For example, naphthalene balls show sublimation at room temperature.
As this process does not cause any change in chemical composition of a substance. Hence, it is known as a physical process.
Similarly, when
sublimes readily at
. This shows change in physical state of carbon dioxide is taking place, i.e, from solid to gaseous phase.
Thus, we can conclude that when
sublimes readily at
then it means physical properties are usually associated with a compound that undergoes this kind of change.
Answer:
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Explanation:
Step 1: Data given
Kp = 4.7 x 10^3 at 400K
Pressure of CH3OH = 0.250 atm
Pressure of HCl = 0.600 atm
Volume = 10.00 L
Step 2: The balanced equation
CH3OH(g) + HCl(g) <=> CH3Cl(g) + H2O(g)
Step 3: The initial pressure
p(CH3OH) = 0.250atm
p(HCl) = 0.600 atm
p(CH3Cl)= 0 atm
p(H2O) = 0 atm
Step 3: Calculate the pressure at the equilibrium
p(CH3OH) = 0.250 - X atm
p(HCl) = 0.600 - X atm
p(CH3Cl)= X atm
p(H2O) = X atm
Step 4: Calculate Kp
Kp = (pHO * pCH3Cl) / (pCH3* pHCl)
4.7 * 10³ = X² /(0.250-X)(0.600-X)
X = 0.249962
p(CH3OH) = 0.250 - 0.249962 = 0.000038 atm
p(HCl) = 0.600 - 0.249962 = 0.350038 atm
p(CH3Cl)= 0.249962 atm
p(H2O) = 0.249962 atm
Kp = (0.249962 * 0.249962) / (0.000038 * 0.350038)
Kp = 4.7 *10³
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm