Answer:
- 130.64°C.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 634.0 L, T₁ = 21.0°C + 273 = 294.0 K.
V₂ = 307.0 L, T₂ = ??? K.
<em>∴ T₂ = V₂T₁/V₁ </em>= (307.0 L)(294.0 K)/(634.0 L) = <em>142.36 K.</em>
<em>∴ T₂(°C) = 142.36 K - 273 = - 130.64°C.</em>
The given question is incomplete. The complete question is as follows.
Sodium sulfate is slowly added to a solution containing 0.0500 M
and 0.0390 M
. What will be the concentration of
(aq) when
begins to precipitate? What percentage of the
can be separated from the Ag(aq) by selective precipitation?
Explanation:
The given reaction is as follows.

= 0.0390 M
When
precipitates then expression for
will be as follows.
![K_{sp} = [Ag^{+}]^{2}[SO^{2-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5BSO%5E%7B2-%7D_%7B4%7D%5D)
![1.20 \times 10^{-5} = (0.0390)^{2} \times [SO^{2-}_{4}]](https://tex.z-dn.net/?f=1.20%20%5Ctimes%2010%5E%7B-5%7D%20%3D%20%280.0390%29%5E%7B2%7D%20%5Ctimes%20%5BSO%5E%7B2-%7D_%7B4%7D%5D)
= 0.00788 M
Now, equation for dissociation of calcium sulfate is as follows.

![K_{sp} = [Ca^{2+}][SO^{2-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5BSO%5E%7B2-%7D_%7B4%7D%5D)
![4.93 \times 10^{-5} = [Ca^{2+}] \times 0.00788](https://tex.z-dn.net/?f=4.93%20%5Ctimes%2010%5E%7B-5%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%20%5Ctimes%200.00788)
= 0.00625 M
Now, we will calculate the percentage of
remaining in the solution as follows.

= 12.5%
And, the percentage of
that can be separated is as follows.
100 - 12.5
= 87.5%
Thus, we can conclude that 87.5% will be the concentration of
when
begins to precipitate.
Answer:
Water transports important nutrients throughout the plant.
Explanation:
Much like blood in an animal, water is necessary for a plants survival, as it transports important nutrients from the soil all through the plant's stems and leaves.
Transition metals are from group 3 to group 12.
Answer:
salt is dull and brittle and conducts electricity when it has been dissolved into water, which it does quite easily.
Explanation:
transparent and colourless in crystalline form- rather like ice.