Answer: hot
Explanation:
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and the system will be cold and surroundings will be hot.
Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and the system will be hot and surroundings will be cold.
As heat is absorbed, the reaction is endothermic and the system will feel hot.
The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
Answer:
probably b i got nothing but i hop eit is good
Explanation:
Specific heat capacity of any substance comes with the unit : J/(g*degree C)
for molar capacity , change gram -> moles unit ( J / moles * degree C)
4.18 J / mol - degree C
H = 1.01 g * 2 = 2.02 g
O = 16 g
2.02 + 16 = 18.02 g
Now :- 4.18 J / mol- degree C) * 18.02 / 1 mole H2O
molar heat = 75.3 J / mol - degree C
<span />
The answers is A. Reales energy stored in chemical bonds