If it’s hydraulic turbine then it’s potential and kinetic energy and if it’s a thermal process then heat energy from the fuel burnt runs the turbine
Answer:
D
Explanation:
The amount of energy released or absorbed is equal the product of the mass, the specific heat capacity and the temperature change. The temperature change being the difference between the final and initial temperature.
Q = mc∆T
Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/g∙K)
∆ is a symbol meaning "the change in" ∆T = change in temperature (Kelvins, K)
From the data provided in the question, we can deduce that:
Q = 16.7KJ = 16,700J
m = 225g
c = 1.74J/g.k
For the temperature, let the final temperature be f. This means our ∆T = f - 20
16,700 = 225 * 1.74 * (f - 20)
16700 = 391.5 (f - 20)
f - 20 = 16700/391.5
f - 20 = 42.7
f = 20 + 42.7 = 62.7
Answer:
22.27 °C = ΔT
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m × c × ΔT
Given data:
mass = 28 g
heat absorbed = 58 cal
specific heat of copper = 0.093 cal/g .°C
temperature change =ΔT= ?
Solution:
Q = m × c × ΔT
58 cal = 28 g × 0.093 cal /g.°C × ΔT
58 cal = 2.604 cal.°C × ΔT
58 cal / 2.604 cal .°C = ΔT
22.27 °C = ΔT
Answer:
I am pretty sure the answer is C.
Explanation: