Answer:
Yes both = and - g can be felt by a rider in a roller coaster.
Explanation:
It is crucial to understand how we feel gravity in this case.
We humans have no sensory organs to directly detect magnitude and direction like some birds and other creatures, but then how do we we feel gravity?
When we stand on our feet we feel our weight due to the normal reaction of floor on our feet trying to keep us stand and our weight trying to crush us down. In an elevator we feel difference in our weight (difference magnitudes of gravity) but actually we are feeling the differences in normal reactions under different accelerations of the elevator.
In the case of roller coaster you will feel +g as you sit on a chair in it, but will feel -g when you are in upside down position as roller coaster move.
When you are seated you will feel the normal reaction of seat on you giving you the feeling +g and the support of the buckles to stay in the roller coaster when you are upside down will give you the -g feeling.
<u>This is just the physics approach</u>, a biological approach can be given in association with sensors relating to ears.
Answer:
-32.5 * 10^-5 J
Explanation:
The potential energy of this system of charges is;
Ue = kq1q2/r
Where;
k is the Coulumb's constant
q1 and q2 are the magnitudes of the charges
r is the distance of separation between the charges
Substituting values;
Ue = 9.0×10^9 N⋅m2/C2 * 5.5 x 10^-8 C *( -2.3 x10^-8) C/(3.5 * 10^-2)
Ue= -32.5 * 10^-5 J
Answer:
he same direction the magnitude of the resultant is equal to the scalar sum of the magnitude of the forces, but if they are applied in different directions the magnitude must be found using the Pythagorean theorem
Explanation:
When there are several applied forces, if they are all in the same direction the magnitude of the resultant is equal to the scalar sum of the magnitude of the forces, but if they are applied in different directions the magnitude must be found using the Pythagorean theorem, so which the resulting dowry is less than the sum of the magnitudes.
Let's carry out an example with two forces, F1 and F2 of equal magnitudes
if they are in the same direction
F_total = F₁ + F₂ = 2 F
if they are at 90º
F_total =
if they are at 180º
F_total = F₁ -F₂ = 0
Answer:
13m & 17m.
Explanation:
Displacement - Shortest distance between the initial and final point. Here ,
=> Displacement = √ ( 12² + 5² )
=> Displacement = √ 144 + 25
=> Displacement = √ 169
=> Displacement = 13 m
Distance - Total path length covered by the body .
=> Distance = 12m + 5m
=> Distance = 17m