Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
The speed of car is 100.8km/h









v car= 28×3.6
=100.8km/h
Hence, the speed of the car is 100.8km/h
learn more about speed from here:
brainly.com/question/28326855
#SPJ4
Answer:
2.87m
Explanation:
Using the law of gravitation to solve this question
F = GMm/r²
G is the gravitational constant
M and m are the masses
r is the distance between the masses
Substitute the given values
G = 6.67×10^-11 m³/kgs²
M =8.8 x 10^6 kg
m = 5.6 x 10^5 kg
F =440N
400 = 6.67×10^-11×8.8 x 10^6 ×5.6 x 10^5/r²
400r² = 328.698×10
400r² = 3286.98
r² = 3286.98/400
r² = 8.21745
r = √8.21745
r = 2.87m
Hence the distance of separation is 2.87m
An external force that is being applied in the direction of the displacement