Answer:
Equation for SHM can be written
V = w A cos w t where w is the angular frequency and the velocity is a maximum at t = 0
V1 = w1 A cos w1 t
V2 = w2 A cos w2 t
V2 / V1 = w2 / w1 since cos X t = 1 if t = zero
V2 / V1 = 2 pi f2 / (2 pi f1) = f2 / f1 = T1 / T2
If the velocity is twice as large the period will be 1/2 long
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.
The sun's energy influences climate in various ways. For example the latitudes at the equator receive more energy from the sun and therefore have warmer temperatures, On the other hand the sun's energy influences precipitation in a climate by driving the water cycle which determines precipitation.The sun is what makes the water cycle take place. That is the sun provides energy or heat to the earth; the heat causes liquid and frozen water to evaporate into water vapor gas, which rises high in the sky to form clouds ( precipitation), that in turn give us rain
Answer: f=150cm in water and f=60cm in air.
Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:
= (nglass - ni)(
-
).
nglass is the index of refraction of the glass;
ni is the index of refraction of the medium you want, water in this case;
R1 is the curvature through which light enters the lens;
R2 is the curvature of the surface which it exits the lens;
Substituting and calculating for water (nwater = 1.3):
= (1.5 - 1.3)(
-
)
= 0.2(
)
f =
= 150
For air (nair = 1):
= (1.5 - 1)(
-
)
f =
= 60
In water, the focal length of the lens is f = 150cm.
In air, f = 60cm.