<span>Due that we already know the horizontal cross-sectional area of the ship, which is 2800 m2 and we are going to understand that value keeps constant for the whole 9.5 of height of the ship from the waterline till the new waterline after unloading, then we just need to calculate the volume as follows:
V = A * H , where V is volume, A is area and H is height
V= 2,800 * 9.5 = 26,600 m3
So this volum of 26,600 cubic meters is the volum of freshwater delivered in the island.</span>
Answer:
0.56 atm
Explanation:
First of all, we need to find the number of moles of the gas.
We know that
m = 1.00 g is the mass of the gas
is the molar mass of the carbon dioxide
So, the number of moles of the gas is

Now we can find the pressure of the gas by using the ideal gas equation:

where
p is the pressure
is the volume
n = 0.023 mol is the number of moles
is the gas constant
is the temperature of the gas
Solving the equation for p, we find

And since we have

the pressure in atmospheres is

Answer:
4:28
Explanation:
4:28am
a 12 hour clock continues going up after 12 (1:00pm=13:00). minutes stay the same. 12:00pm=00:00. this shows 4:28am, so you count 4 after 00:00.
Ridges, mountains, and volcanoes!
<span>How many electrons would it take to equal the mass of a proton:
Here's one way of finding the value of it:
=> number of electrons is equivalent to 1 proton.
Let's have an example.
1.6726*10 -24g
_______________
1 proton
______________
9.109*10- ^28g
_______________
1 electron
Based on the given example above, the electrons is 1 839 per 1 proton.
It's about 1800 electrons/proton.</span>