Under general relativity, there is no 'before the Big Bang'. The problem is that time is itself a part of the universe and is affected by matter and energy. Because of the huge densities just after the Big Bang, time itself is warped in such a way that it cannot go back before that event. It is somewhat like asking what is north of the north pole.
The conservation of matter and energy states that the total amount of mass and energy at one time is the same at any other time. Notice how time is a crucial part of this statement. To even talk about conservation laws, you have to have time.
The upshot is that the Big Bang did not break the conservation laws because time itself is part of the universe and started at the Big Bang and because the conservation laws need to have time in their statements.
Here, ball is released... and it is in free fall means with zero initial velocity.
We know, s = ut + 1/2 at²
Here, s = 1000 m
u = 0
a = 10 m/s2
Substitute their values,
1000 = 0 + 1/2 * 10 * t²
2000 = 10 * t²
t² = 2000 /10
t = √200
t = 14.14 s
In short, Your Answer would be 14.14 seconds
Hope this helps!
Answer:
a
because the mechanical wave is when it goes over and over again
Explanation:
We have,
Speed of plane a is 900 km/h
Plane b is moving at a rate of 
It is required to find which plane is faster. To find which plane is faster, we need to compare their speeds.
Speed of a plane a is 900 km/h and that of plane b is 50 km/h. So, we can say that plane a is moving faster.
Answer:

we can see that this time period is independent of the mass of the child so answer would be same if the child mass is different
Explanation:
Natural frequency of a simple pendulum of L length is given as

so the time period of the oscillation is given as

so we will have



also from above formula we can see that this time period is independent of the mass of the child so answer would be same if the child mass is different