Answer:
Explanation:
Plantae Animalia Archaebacteria and Animalia Protista and Eubacteria . Protista and Eubacteria kingdom(s) include organisms that are autotrophic or heterotrophic
1. a. FeS + 2HCl --> FeCl2 + H2S
b. This is a double- replacement reaction. (The elements "switch partners".)
2. a.2Na + F2 --> 2NaF
b. This is a composition/synthesis reaction. (The two reactants are combining or synthesizing to make one product.)
3. a. 2HgO --> 2Hg + O2
b. This is a decomposition reaction. (The single reactant is breaking down or "decomposing" into multiple reactants.)
4. Hydrogen gas reacts with oxygen gas to create water in a composition/synthesis reaction.
I hope these answers will help you! If you need any explanation, ask and hopefully I can get back to you. ;)
Answer:
chemical change
Explanation:
chemical change requires energy in the form of heat or electricity.
Answer:
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
Explanation:
Sodium is present in group 1.
It is alkali metal.
It has one valence electron.
The atomic number of sodium is 11.
Its atomic mass is 23 amu.
The longhand notation of electronic configuration of sodium can be written as,
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
The electronic configuration in shorthand notation( noble gas) would be written as,
Na₁₁ = [Ne] 3s¹
Sodium loses its one valence electron to complete the octet and get stable thus form +1 cation.
It react with halogen and form salt. Such as sodium chloride.
2Na + Cl₂ → 2NaCl
Is true. Nitrogen gas behaves more like an ideal gas as the
temperature increases. Under normal conditions such as normal pressure and temperature
conditions , most real gases behave qualitatively as an ideal gas. Many
gases such as air , nitrogen , oxygen ,hydrogen , noble gases , and some heavy
gases such as carbon dioxide can be treated as ideal gases within a reasonable tolerance. Generally,
the removal of ideal gas conditions tends to be lower at higher temperatures and lower density (that is at lower pressure ), since the work made by the intermolecular
forces is less important compared to the kinetic energy<span> of the particles, and the size of the molecules is less important
compared to the empty space between them. </span><span>The ideal gas model
tends to fail at lower temperatures or at high pressures, when intermolecular
forces and intermolecular size are important.</span>