a) NH₃ molecules have stronger intermolecular attractions than CH₄ molecules.
Explanation:
Ammonia molecules have stronger intermolecular attractions compared to methane.
Ammonia molecules have london dispersion forces and hydrogen bonds between their molecules.
Methane molecules have only london dispersion forces in their structure.
- hydrogen bonds are very strong attractive forces between molecules in which the hydrogen of a molecule is attracted by a more electronegative atom of another usually oxygen, nitrogen and fluorine.
- London dispersion forces are weak forces of attraction between heteronuclear atoms.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly
Answer:
El volumen del cuerpo es el mismo al comienzo de la experiencia.
Explicación:
El volumen del cuerpo es el mismo al principio porque el volumen no cambia si la temperatura permanece igual. Si cambiamos la temperatura i. mi. Al aumentar la temperatura, las moléculas comienzan a expandirse y se produce un aumento de volumen mientras que cuando disminuimos la temperatura, las moléculas de esa sustancia comienzan a contraerse y el volumen de esa sustancia disminuye. Entonces concluimos que el volumen depende de la temperatura.
When calcium carbonate is heated, it breaks down to form calcium oxide and carbon dioxide.
Thermal decomposition is the process in which heat is required.
It is also known as thermolysis.
It is processed in which a compound breaks into two or more products when the heat is supplied.
This reaction is used for the production of oxygen.
This reaction is also used for production of acidic as well as basic oxides.
CaCO3 on thermal decomposition gives:
CaCO3→CaO+CO2
CaO→ Basic oxide.
CO2→ Acidic oxide.