Because of the strong attractions between polar water molecules.
Answer:
Endothermic
Explanation:
The temperature of the water decreased.
The water lost heat.
The heat must have gone into getting the KNO₃ into solution.
So, the dissolving of KNO₃ in water is endothermic.
Use Boyle's Law of Pressure: P1 x V1 = P2 x V2. Givens: P1=0.9 atm V1= 4 P2= 0.9 atm Find: V2 Equation: 0.9 atm x 4 x 4 L = 0.20 atm x V2Solve: 36 atmL= 0.20 atm x V2 18 : = V2 Short answer: The new volume is 104 ml.
Answer:
Y is a 3-chloro-3-methylpentane.
The structure is shown in the figure attached.
Explanation:
The radical chlorination of 3-methylpentane can lead to a tertiary substituted carbon (Y) and to a secondary one (X).
The E2 elimination mechanism, as shown in the figure, will happen with a simulyaneous attack from the base and elimination of the chlorine. This means that primary and secondary substracts undergo the E2 mechanism faster than tertiary substracts.