Answer:
D) With an increase in altitude, atmospheric pressure increases as well.
Explanation:
Generally when altitude increases, the value of pressure decreases. This shows that pressure is inversely proportional to altitude. For example, the higher the altitude, the lower the pressure and vice versa. At very high altitude, the number of molecules of air are smaller than the number of moles of air at very low altitude. Thus, the higher the altitude, the lower the atmospheric pressure and the lower the altitude, the higher the atmospheric pressure. Therefore, option (D) is false.
Answer:
The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens, but also to metals such as sodium or magnesium. ... All four of these electrons are counted in both the carbon octet and the oxygen octet, so that both atoms are considered to obey the octet rule.
Explanation:
The most reactive metals are found on the left of the periodic table, in the blue column, known as the alkali metals. Their reactivity increases as we go down column (group) one. Reactive metals, when attached to less reactive metals, have the ability to prevent the less reactive metal from rusting.
Answer:
74.4 ml
Explanation:
C₆H₈O₇(aq) + 3NaHCO₃(s) => Na₃C₆H₅O₃(aq + 3CO₂(g) + 3H₂O(l)
Given 15g = 15g/84g/mol = 0.1786mole Sodium Bicarbonate
From equation stoichiometry 3moles NaHCO₃ is needed for each mole citric acid or, moles of citric acid needed is 1/3 of moles sodium bicarbonate used.
Therefore, for complete reaction of 0.1786 mole NaHCO₃ one would need 1/3 of 0.1786 mole citric acid or 0.0595 mole H-citrate.
The question is now what volume of 0.8M H-citrate solution would contain 0.0595mole of the H-citrate? This can be determined from the equation defining molarity. That is => Molarity = moles solute / Liters of solution
=> Volume (Liters) = moles citric acid / Molarity of citric acid solution
=> Volume needed in liters = 0.0.0595 mole/0.80M = 0.0744 Liters or 74.4 ml
Sodium peroxide is the answer!