<u><em>The answer is definitely the sun</em></u> because a sun is a star. Other stars are to far, so thats why its soo tinny. Some stars are brighter than the sun... But your answer is definitely <u><em>SUN</em></u>...
Answer:
V₁ = 96.2 mL
Explanation:
Given data:
Initial volume of NH₄OH required = ?
Initial molarity = 15.6 M
Final molarity = 3.00 M
Final volume = 500.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of NH₄OH
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
15.6 M ×V₁ = 3.00 M×500.0 mL
15.6 M ×V₁ = 1500 M.mL
V₁ = 1500 M.mL /15.6 M
V₁ = 96.2 mL
Answer:
Magnetivity and melting point.
Explanation:
Aluminum, steel and tin cans can be separated by two step process of magnetisation and melting point, because the three cans have different magnetic properties.
Steel attract to magnet easily because of it's has magnetic properties and these separate steel from aluminum.
Neither steel and aluminum melted at 300°C but Tin melt at that temperature.
Answer:
334J/g
Explanation:
Data obtained from the question include:
Mass (m) = 1g
Specific heat of Fusion (Hf) = 334 J/g
Heat (Q) =?
Using the equation Q = m·Hf, we can obtain the heat released as follow:
Q = m·Hf
Q = 1 x 334
Q = 334J
Therefore, the amount of heat released is 334J
<span>We are given the initial amount of 1 million carbon-14 atoms and the final amount which is 1/16 of the current atmospheric 14C levels. Also, the half life of carbon is </span>5,750 years. WE can use the decay formula
Aₓ = A₀e^-(ln2/t1/2)t
1,000,000(1/16) = (1,000,000)e^-(ln2/5750)t
t = 23,000 years