Answer:
The third drop is 0.26m
Explanation:
The drop 1 impacts at time T is given by:
T=sqrt(2h/g)
T= sqrt[(2×2.4)/9.8]
T= sqrt(4.8/9.8)
T= sqrt(0.4898)
T= 0.70seconds
4th drops starts at dT=0.70/3= 0.23seconds
The interval between the drops is 0.23seconds
Third drop will fall at t= 0.23
h=1/2gt^2
h= 1/2×9.81×(0.23)^2
h= 0.26m
sir what's the question you have all you wrote is it's not b
Answer:
1.15 m/s
Explanation:
Part of the question is missing. Found the missing part on google:
"1. A hanging mass of 1500 grams compresses a spring 2.0 cm. Find the spring constant in N/m."
Solution:
First of all, we need to find the spring constant. We can use Hooke's law:

where
is the force applied to the spring (the weight of the hanging mass)
x = 2.0 cm = 0.02 m is the compression of the spring
Solving for k, we find the spring constant:

In the second part of the problem, the spring is compressed by
x = 3.0 cm = 0.03 m
So the elastic potential energy of the spring is

This energy is entirely converted into kinetic energy of the cart, which is:

where
m = 500 g = 0.5 kg is the mass of the cart
v is its speed
Solving for v,

Answer:
The property of the wave marked X is related to the source of the wave
Explanation:
The source of of origin of waves
Electromagnetic wave are waves that consists of varying electric and magnetic field that vibrate perpendicular to each other and to the direction of propagation of the wave and they are therefore transverse waves and transfer energy
Electromagnetic waves originate from the vibration of charged particles that gives off varying electric and magnetic fields
Mechanical waves are defined as waves that require a material medium such as air, water, metal, plastic, stretched leather, or wood to propagate
Mechanical waves originate from vibration of the particles of a medium
Sound waves which is a form of longitudinal mechanical waves that propagates by the vibration of the particles of a given medium about a point parallel to the direction of propagation of the wave.