1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
2 years ago
5

Define waves as it applies to electromagnetic fields

Engineering
1 answer:
julsineya [31]2 years ago
5 0

Waves in the electric and magnetic fields are known as electromagnetic waves. You must first understand what a field is, which is just a technique of giving each square inch of space a numerical value. You may see that as a temperature field, for instance, when you look at the weather predictions and they mention the temperature in several locations. Every location on Earth has a unique temperature that can be quantified. Everywhere on Earth has its own wind velocity, which is another form of field. This field differs somewhat from the temperature field in that the wind velocity has both a direction and a magnitude, whereas the temperature just has a magnitude (how hot it is). A vector is a quantity that has both magnitude and direction, hence a field that contains vectors at every location is referred to as a vector field. Vector fields include the magnetic and electric fields. We may examine what would happen if we placed a charged particle at any given position in space. If the charged particle were to accelerate, we would state that the electric field there is the direction in which the particle is moving. In general, positively charged particles will move in the electric field's direction, whereas negatively charged particles will move in the opposite way. Because it is a vector field, the magnetic field exhibits comparable behavior. We discovered in the 19th century that the same interaction, electromagnetism, really produces both electric and magnetic fields. Like an electromagnet, a changing electric field will produce a magnetic field, and a changing magnetic field will induce an electric field (like in a generator). If your system is configured properly, you may have an electric field that fluctuates, which in turn produces a magnetic field, which in turn induces another electric field, which in turn generates another magnetic field, and so on indefinitely. At the speed of light, this oscillation between a strong magnetic field and strong electric field spreads out indefinitely. In reality, light is an electromagnetic wave—an oscillation in the electromagnetic fields. An electric or magnetic field may exist without a medium since they exist in a vacuum, which implies that waves in these fields don't require a medium like sound to flow through.

You might be interested in
A 132mm diameter solid circular section​
Ganezh [65]

Answer:

not sure if this helps but

5 0
3 years ago
A budding electronics hobbyist wants to make a simple 1.0-nF capacitor for tuning her crystal radio, using two sheets of aluminu
bazaltina [42]

Answer:

a. 8 sheets of paper is needed between her plates to get the proper capacitance

b. Area of Aluminum Foil needed = 0.45m²

c. To keep a 1.0-nF, a larger area of Teflon is required.

Explanation:

a.

First, we need to calculate the distance between two plates.

This is given by

d = Kε0A/C

Where

K = 3

ε0 = Physical Constant = 8.854 * 10^-12 C²/Nm²

A = Area = 22 * 28 = 616cm² = 0.0616m²

C = 1.0-nF = 1 * 10^-12F

So, d = (3 * 8.854 * 10^-12 C²/Nm² * 0.0616) / (1 * 10^-12F)

d = 1.64 * 10^-3m

d = 1.64mm

Now, that the distance has been solved.

The Number of Sheets, N is given by

N = d/d,sheet where d, sheet =the sheet thickness = 0.2mm

N = 1.64/0.2

N = 8.2

N = 8 sheets --- Approximated

b.

Here, she's changed the diameter of the sheets to 12mm

Well make use of the formula in (a) above

Using d = Kε0A/C

Where

d = 12 * 10^-3m

Other constraints remain unchanged

Make A the subject of formula

A = dC/Kε0

A = (12 * 10^-3m * 1 * 10^-12F)/(3 * 8.854 * 10^-12 C²/Nm²)

A= 0.45m²

c. From (b) above

A ∝ 1/K

As the dielectric constant increase, the area decreases

The dielectric constant of a Teflon is 2.1

This means that if she used a Teflon instead, the area will be larger.

So, to keep a 1.0-nF, a larger area of Teflon is required.

7 0
3 years ago
During his military campaign in what is now Germany, Julius Caesar lead his army of 40,000 soldiers to the western bank of the R
CaHeK987 [17]

Answer:

identifying a problem

Explanation:

its right

5 0
3 years ago
The gas expanding in the combustion space of a reciprocating engine has an initial pressure of 5 MPa and an initial temperature
Anit [1.1K]

Answer:

a). Work transfer = 527.2 kJ

b). Heat Transfer = 197.7 kJ

Explanation:

Given:

P_{1} = 5 Mpa

T_{1} = 1623°C

                       = 1896 K

V_{1} = 0.05 m^{3}

Also given \frac{V_{2}}{V_{1}} = 20

Therefore, V_{2} = 1  m^{3}

R = 0.27 kJ / kg-K

C_{V} = 0.8 kJ / kg-K

Also given : P_{1}V_{1}^{1.25}=C

   Therefore, P_{1}V_{1}^{1.25} = P_{2}V_{2}^{1.25}

                     5\times 0.05^{1.25}=P_{2}\times 1^{1.25}

                     P_{2} = 0.1182 MPa

a). Work transfer, δW = \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

                                  \left [\frac{5\times 0.05-0.1182\times 1}{1.25-1}  \right ]\times 10^{6}

                              = 527200 J

                             = 527.200 kJ

b). From 1st law of thermodynamics,

Heat transfer, δQ = ΔU+δW

   = \frac{mR(T_{2}-T_{1})}{\gamma -1}+ \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}

  =\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W

  =\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200

  = 197.7 kJ

6 0
3 years ago
This assignment is designed to test your understanding of graphical user interface components and Event Driven programming in Ja
lys-0071 [83]

Answer:

Java program is given below

Explanation:

JavaPadGUI.java

package javapad.gui;

import java.awt.BorderLayout;

import java.awt.Container;

import java.awt.Dimension;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

import java.util.Scanner;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

public class JavaPadGUI extends JFrame implements ActionListener{

  //constants

  private static final String TITLE = "Macrosoft JavaPad XP";

  private static final String SLOGAN = "Macrosoft: Resistance is futile";

 

  //button names

  private static final String NEW = "New";

  private static final String LOAD = "Load";

  private static final String SAVE = "Save";

  private static final String QUIT = "Quit";

 

  private static final String FILENAME = "hardcode.txt";

  //messages

 

  private static final String QUIT_MSG = "Quitting, Save?";

  private static final String LOAD_ERR = "Could not access file " + FILENAME;

 

 

  //fields

  private JTextArea txtContent;

  private JButton butNew, butLoad, butSave, butQuit;

 

  public JavaPadGUI()

  {

      super(TITLE);

      createUI();

      setSize(new Dimension(400, 300));

      setDefaultCloseOperation(EXIT_ON_CLOSE);

         

  }

 

  private void createUI()

  {

      Container c = getContentPane();

      c.setLayout(new BorderLayout(30,30));

     

      //create the buttons panel

      JPanel butPanel = new JPanel();

      butPanel.add(butNew = new JButton(NEW));

      butPanel.add(butLoad = new JButton(LOAD));

      butPanel.add(butSave = new JButton(SAVE));

      butPanel.add(butQuit = new JButton(QUIT));

     

      //set command names for the buttons, these will be when button is clicked

      butNew.setActionCommand(NEW);

      butLoad.setActionCommand(LOAD);

      butSave.setActionCommand(SAVE);

      butQuit.setActionCommand(QUIT);

     

      JPanel sloganPanel = new JPanel();

      sloganPanel.add(new JLabel(SLOGAN));

     

      //create textarea with scrollbar

      txtContent = new JTextArea(15, 25);

      txtContent.setLineWrap(true);

         

      JScrollPane scroll = new JScrollPane(txtContent);

     

      //now add all components

      c.add(butPanel, BorderLayout.NORTH);

      c.add(scroll, BorderLayout.CENTER);

      c.add(sloganPanel, BorderLayout.SOUTH);

     

     

      //set the actionlistner to buttons to handle button click event

      butNew.addActionListener(this);

      butLoad.addActionListener(this);

      butSave.addActionListener(this);

      butQuit.addActionListener(this);

     

  }

  public void actionPerformed(ActionEvent e)

  {

      String cmd = e.getActionCommand();

      if(cmd.equals(NEW))

          txtContent.setText("");

      else if (cmd.equals(LOAD))

          load();

      else if(cmd.equals(SAVE))

          save();

      else if (cmd.equals(QUIT))

          quit();

  }

  private void quit()

  {

      int option = JOptionPane.showConfirmDialog(this, QUIT_MSG);

      if(option == JOptionPane.YES_OPTION)

      {

          save();

      }

     

      System.exit(0);

  }

 

  private void save()

  {

      try {

          PrintWriter w = new PrintWriter(new File(FILENAME));

          w.write(txtContent.getText());

          w.close();

      } catch (FileNotFoundException e) {

          JOptionPane.showMessageDialog(this,"I/O Error", LOAD_ERR, JOptionPane.ERROR_MESSAGE);

      }

             

  }

  private void load()

  {

      try {

          Scanner s = new Scanner(new File(FILENAME));

          String str = "";

          while(s.hasNextLine())

              str += s.nextLine();

          txtContent.setText(str);

          s.close();

      } catch (FileNotFoundException e) {

          JOptionPane.showMessageDialog(this, LOAD_ERR, "I/O Error",JOptionPane.ERROR_MESSAGE);

      }

     

  }

}

RunJavaPad.java

package javapad;

import javapad.gui.JavaPadGUI;

public class RunJavaPad {

  public static void main(String[] args) {

      JavaPadGUI gui = new JavaPadGUI();

      gui.setVisible(true);

  }

}

7 0
3 years ago
Other questions:
  • A 3.5-m3 rigid tank initially contains air whose density is 2 kg/m3 . The tank is connected to a high-pressure supply line throu
    8·1 answer
  • The density of a fluid is given by the empirical equation rho 70:5 exp 8:27 107 P where rho is density (lbm/ft3 ) and P is press
    6·1 answer
  • How does a carburetor work?
    7·1 answer
  • A teenager was pulling a prank and placed a large stuffed penguin in the middle of a roadway. A driver is traveling on this leve
    13·1 answer
  • What steps might one take to make a decision or solve a problem
    10·2 answers
  • A 150-lbm astronaut took his bathroom scale (a spring scale) and a beam scale (compares masses) to the moon where the local grav
    13·1 answer
  • What is the base unit in standard measurement
    13·2 answers
  • The normal stress at gage H calculated in Part 1 includes four components: an axial component due to load P, σaxial, P, a bendin
    9·1 answer
  • Some wire of radius is 1.262mm has a resistance of 20Ω. Determine the resistance of a wire of the same length and material if th
    14·2 answers
  • AA
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!