Which of the following is a change in physical composition?it could be D. A brick being ground up into fine dust. as this is a change from one physical form to another Which of the following is a change in chemical composition? would be A. A white precipitate forming as a result of the combination of two liquids. as this is a clear chemical change What kind of bond would you expect between H, S and O? i belive it would be D. Covalent
Which of the following is not one of the three processes of the hydrologic cycle? this gose to B. Collection the water cycle has nothing to do with this so there for its not part of the cycle
The neutral atom of lead must have 82 protons while ions can have b or less than 82.
The atomic number of an element is the number of protons in the nucleus of the element.
Also, for neutral atoms, the number of protons equals the number of electrons.
In ionic form, the number of protons/electrons of an atom may vary and be different from that of the neutral form.
Positive charges mean that the ion has less proton than its neutral version while negative charges mean that it has more electrons than its neutral version.
Thus, the neutral atom of lead will contain an equal number of protons as the electrons while its ionic form can have more or less than 82 protons.
More on atoms can be found here: brainly.com/question/803445?referrer=searchResults
There are 680,000 microliters in 0.68 liters.
Delta S reaction= Delta S products- Delta S reactants
don't forget to mulitiply by coefficients
also
here is a really slow way to do it
you know the moles of gas increased
so Delta S is positive
so its B or D
then just do the units digit to see which one match up
The molality of a solute is equal to the moles of solute per kg of solvent. We are given the mole fraction of I₂ in CH₂Cl₂ is <em>X</em> = 0.115. If we can an arbitrary sample of 1 mole of solution, we will have:
0.115 mol I₂
1 - 0.115 = 0.885 mol CH₂Cl₂
We need moles of solute, which we have, and must convert our moles of solvent to kg:
0.885 mol x 84.93 g/mol = 75.2 g CH₂Cl₂ x 1 kg/1000g = 0.0752 kg CH₂Cl₂
We can now calculate the molality:
m = 0.115 mol I₂/0.0752 kg CH₂Cl₂
m = 1.53 mol I₂/kg CH₂Cl₂
The molality of the iodine solution is 1.53.