Answer:
motion
Explanation:
i had an assignment on it!
Answer:
The focal lenth (F) =+10.0cm
Explanation:
The formular for combined focal length (F) is given as;

In this question,
F1 = 20cm
F2 = -30cm
Plugging the values into the formuar above,

![1/f = 0.05 - 0.033[tex]1/f = -0.017f = [tex]1/ -0.017](https://tex.z-dn.net/?f=1%2Ff%20%3D%200.05%20-%200.033%3C%2Fp%3E%3Cp%3E%5Btex%5D1%2Ff%20%3D%20-0.017%3C%2Fp%3E%3Cp%3Ef%20%3D%20%5Btex%5D1%2F%20-0.017)
f = 58.82cm
i.e. the combination behaves as a converging lens (because of the postive sign) of focal length 58.82cm .
Answer:
the speed of the waves is 150 cm/s
Explanation:
Given;
frequency of the wave, f = 10 Hz = 10
distance between 4 nodes, L = 15.0 cm
The wavelength (λ) of the wave is calculated as follows;
Node to Node = λ/2
L = 2(Node to Node) = (4 Nodes) = 2 (λ/2) = λ
Thus, λ = L = 15.0 cm
The speed (v) of the wave is calculated as follows;
v = fλ
v = 10 Hz x 15.0 cm
v = 150 cm/s
Therefore, the speed of the waves is 150 cm/s
Answer:
16 ohms
Explanation:
V=
I
⋅
R
where, V is the net potential difference in the circuit, I is the current in the circuit and R is the net resistance of the circuit.
In this case, V
=
240 volts, I
=
15 amperes.
240
=
15
⋅
R
⇒
R
=
240/
15
=
16 ohms
Answer:
option C
Explanation:
given,
Force by the engine on plane in West direction = 350 N
Frictional force on the runway = 100 N in east
force exerted by the wind = 100 N in east
net force and direction = ?
consider west to be positive and east be negative.
when airplane will be moving there will be frictional as well as wind resistance will be acting in opposite direction of airplane
Net force = 350 N - 100 N - 100 N
= 150 N
as our answer comes out to be positive so the airplane will be moving in West
hence, the correct answer is option C