It is false, bounded rationality is the idea that rationality is limited when individuals make decisions. ... Limitations include the difficulty of the problem requiring a decision, the cognitive capability of the mind, and the time available to make the decision.
But one thing, NEXT TIME TELL US THE QUESTION FIRST AND DON'T JUST LEAVE BLINDLY ASKING SOMETHING.
<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>
- A certain circuit is composed of two series resistors
- The total resistance is 10 ohms
- One of the resistor is 4 ohms
<h3>
<u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- We have to find the value of other resistor?
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
We know that,
In series combination,
- When a number of resistances are connected in series, the equivalent I.e resultant resistance is equal to the sum of the individual resistances and is greater than any individual resistance
<u>That </u><u>is</u><u>, </u>
Rn in series = R1 + R2 + R3.....So on
<u>Therefore</u><u>, </u>
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
We have,
R1 + R2 = 10 Ω
4 + R2 = 10Ω
R2 = 10 - 4
R2 = 6Ω
Hence, The value of R2 resistor in series is 6Ω
The one fact that needs to be mentioned but isn't given anywhere on or around the graph is: The distance, on the vertical axis, is the distance FROM home. So any point on the graph where the distance is zero ... the point is in the x-axis ... is a point AT home.
Segment D ...
Walking AWAY from home; distance increases as time increases.
Segment B ...
Not walking; distance doesn't change as time increases.
Segment C ...
Walking away from home, but slower than before; distance increases as time increases, but not as fast. Slope is less than segment-D.
Segment A ...
Going home; distance is DEcreasing as time increases. Walking pretty fast ... the slope of the line is steep.
Answer:
Explanation:
The momentum of the first piece = m v =- m x 31 i kg m/s in - x direction direction
The momentum of the second piece = -m x 31 j kg m /s in Y - direction
Total momentum = - 31 m( i + j )
To conserve momentum , the third piece must have momentum equal to this
and opposite to it
So momentum of the third piece = 3m x V = 31 m ( i +j )
V = 31/3 ( i + j ) =
Magnitude of velocity V = √2 x 31/ 3 = 14.6 m / s
Its direction will be towards the vector i + j ie 45° from x - axis in positive direction